倍数和因数评课稿1

  听了刘老师的《3的倍数的特征》这堂课,收获颇多,尤其是在引导学生亲历探索3的倍数的特征的过程给我留下的印象很深。

  3的倍数的特征比较隐蔽,学生一般想不到从“各位上数的”去研究,本课注重引导学生经历探索的过程。上课开始先让学生写出了100以内3的倍数,然后让学生们猜测:“同学们,那你们猜猜看,3的倍数有什么特征呢?”猜测是一种常用的数学思考方法,让学生猜测3的倍数有什么特征,能较好地调动学生的学习积极性。由于受2的倍数和5的倍数的特征的影响,有学生只关注到数字的个位,很自然猜测到:“个位上是0、1、2、4、5、7、8、3、6、9的数一定是3的倍数”。

  老师对学生的猜想不作肯定或否定的回答,而是让学生借助摆棋子,自己通过实验来验证自己的猜想,刘老师先让学生确定一个3的倍数,如24,然后让学生自己摆棋子,十位摆的颗数,个位摆的颗数,共用颗数,这个时候学生就在十位摆2颗,个位摆4颗,共用了6颗棋子,然后再选好一个3的倍数,依次摆下去,学生在摆的过程中也渐渐的发现了蕴含在这中间的3的倍数的特征,最后在小结的过程中将十位摆的颗数、个位摆的颗数、共用颗数抽象成十位、个位、各个数位上的数字之和,而把棋子颗数抽象成各位上数的和,是理解3的倍数特征的关键,而刘老师只是稍稍引导学生,最后由学生交流,用语言概括出3的倍数的特征,整个过程清晰明了,体现了数学的严谨性和数学结论的确定性。在总结出3的倍数的特征后,老师又让学生举例来验证结论的正确性,加深学生对3的倍数的特征的理解。

  由此可以看出,猜想、验证、推理和交流是这节课采用的主要学习方式,而教师一直在学生中进行指导,使得小组合作式的探究更有实效,但个人认为,如果在学生动手摆棋子、探索规律的过程之前,教师先示范摆法,使学生的操作更有章有法,我相信学习效果可能会更加明显,总之,这是一堂值得去学习的课堂,在以后的教学中,我也会更多关注学生经历探索的过程。

倍数和因数评课稿2

  有幸听了刘老师执教《2、5的倍数的特征》一课,受益匪浅。

  2、5的倍数特征有共同之处,即都要关注个位上的数字。刘老师在教学2的倍数特征时下功夫较多,由找倍数——观察特征——验证发现——得出结论,每一环节都使学生明确活动目的,找到学习方法。再到5的倍数特征时,何不由扶到放,充分发挥学生的自主能力性呢?因此,刘老师完全放手,给学生以充分的时间和空间,让他们在观察、探索中体验成功的喜悦。

  在教学既是2又是5的倍数的特征时,刘老师没有让学生通过做课本上的习题总结结论,而是通过让学生说自己的学号,谁是2的倍数,谁是5的倍数,然后自然的追问一句:“为什么有的同学举了两次手?”全体学生幡然醒悟,原来这几个同学的学号既是2,又是5的倍数,很自然的找到了既是2又是5的倍数的特征,我感觉这一个环节的设计非常自然,贴近学生实际。这是我认为本节课比较成功的地方。

  不足之处:

  1、营造**、宽松的学习氛围不够。课堂气氛在很大程度上影响着学生学习过程中创造性的发挥。这节课一开始教师营造气氛不很到位。后来气氛有所缓和。

  2、总怕学生在这节课里不能很好的接受知识,所以在个别应放手的地方却还在牵着学生走。总结性的语言也显得有些罗嗦。

  3、本节课在教学评价方式上略显单一。对学生的评价少,激励性的语言不够。

倍数和因数评课稿3

  今天参加了县小学数学研究班下各组的业务培训活动,王薇薇老师上的《最小公倍数》(五下)一课给我留下了较深的印象。合理清晰的思路、简洁明亮的风格、灵活有效的调控,取得了较好的教学效果。

  一、谈话引入——自然贴切

  1、从春游话题引入信息:小兰想让爸爸妈妈带她去春游,四月一日起,妈妈每4天休息一天,爸爸每6天休息一天。

  2、讨论“每4天休息一天”的意思。

  3、出示问题:在这一个月里,他们可以选哪些日子去呢?

  这一情境的创设至少有三点好处:一是适时,三月底,正是春游的好时候;二是激趣,一家子出游是学生感兴趣的事件;三是切题,爸爸妈妈共同的休息日就是4和6的公倍数。

  二、建立概念——联系生活

  1、(一学生回答是12日或24日)问:你是怎样找到的?

  2、师生共同寻找:

  30以内4的倍数有:4、8、12、16、20、24、28(问:为什么要加“30以内”)

  30以内6的倍数有:6、12、18、24、30

  30以内4和6的公倍数有:12、24

  3、根据上面的信息,她们最早可以哪一天去?(这一生活问题对应的数学问题是“最小公倍数”是多少。)

  4、(4和6的最小公倍数有:12)在这里为什么不用加“30以内”?

  5、尝试用集合图来表示黑板上的内容。

  30以内4的倍数30以内6的倍数

  这一环节之后是否要拓展?如果把“30以内”去掉,集合图里的数据该怎样修改?省略号表示什么?(两个数的公倍数是无限的)

  三、探究求法——重视技能

  努力引导学生主动参与两个数最小公倍数的探究过程,重视数学技能的形成。特别是倍数关系和互质关系的两个数的最小公倍数的求法,让学生经历了猜测——举例验证——归纳的学习过程,学生思维活跃,如在找对象11和13的最小公倍数时,11的倍数从1倍找到11倍还能口算,老师问12倍不能口算怎么办,一生能够提出只要再加上11就行了。在求一般关系两数的最小公倍数时,引导学生归纳步骤:首先多写其中某一数的倍数,然后再写第二个数的倍数,当出现和第一个数相同时就是这两数的最小公总数了。

  其外,老师也非常重视书写格式的规范,虽会多花了点时间,也是一种好习惯。

  四、巩固提高——突出重点

  探讨一个问题:练习的侧重点应该是一般关系还是特殊关系两个数最小公倍数的求法?

  特殊关系两数的最小公倍数探究过程费时费力,但规律出来之后是容易掌握的,关键是在求之前先判断。一般关系在概念教学时就已完整呈现了方法,理解较方便,但从我们平时经验看,出错的往往是这一类。

  另外,照应开头,回归生活,也有补一些应用性的解决问题。

倍数和因数评课稿4

  《因数和倍数》这一堂课在各个版本中的内容和学习目标都存在着差异。今天听了《因数和倍数》的不同上法,结合自己先前对教材的认识与设计,现在比较着来谈谈听完课后的一些感想。

  1、新旧链接,揭示概念。

  支老师在充分估计学生思维能力的基础上,运用已有的数学知识,让学生建立了“因数与倍数”的概念。如:课的开始,支老师从操作活动把12个小正方形摆成不同的长方形引入,同时训练孩子的空间思维能力,在不动手操作的情况下,用一个简单的算式表达自己的思维过程。让学生说出不同的乘法算式,从而导出倍数和因数的概念。在概念的揭示过程中。让学生自主体验数与形的结合,进而形成因数与倍数的意义。如当得出2×6=12时,引导学生充分练说,“12是6的倍数,12也是2的倍数,6和2都是12的因数”,让学生读读、想想这几句话的意思,初步感受倍数和因数的意义是与乘法有联系的,表达的是自然数之间的关系;接着要求学生根据12×1=12、3×4=12说说哪一个数是哪一个数的倍数(或因数),在迁移中进一步认识倍数和因数的意义。其中12是12的因数、1是12的因数,12是12的倍数等特例,为后面的教学扫除难点。这一环节借助有意义的操作和想象活动,由形到数,再由数到形,学生自主体验其中的因倍关系,为倍数因数概念的引入打下了坚实的基础,数形结合的思想得到了较好的体现。

  2、找准机会,渗透方法。

  在新知教学中,支老师注重学生的探究,渗透数学思想方法的教学,发展思维。本节课中找一个数的倍数和因数,都有比较好的方法。如何通过学生的探究找到方法,成了教学的亮点。如“找36的因数”,应该说,找出36的几个因数并不难,难就难在找出36的所有因数。36有9个因数,如何有序地一个不漏地找出36的因数,我觉得对于刚刚认识因数概念的学生来说有一定的难度。教学中,支老师并没有急切地认定结果,也没有把方法简单地告诉学生,而是让学生**探究,在作业纸上**写出36的所有因数,教师则及时巡视并请学生将各种情况反馈在投影上。有用乘法找的,(有用除法找的,)有有序找的,也有无序找而有遗漏的。教师引导学生对(有序和无序找的)各种方法作了比较,学生在比较、交流中感悟到有序思考的必要性和科学性。这是本节课新知探究阶段的思维交流。既是不断深化理解因数与倍数知识的过程,又是培养学生良好思维品质的过程。给学生**思考的空间,提出了各自的解法或见解,是思维独创性的培养;引导学生一对一对有序的找,或从1开始,用除法一个个去试,是思维条理性的培养;既有迁移于摆方块的形象思维,又有直接运用除法算式的抽象思维,或乘除法口诀的综合运用等,在感受解法多样性中,培养了学生思维的灵活性。在这里教师继续**学生“找到什么时候停?”让学生自然得出:找到两个因数非常接近时就不用再找了。这样一来对学生又是一个知识层面上的提高。

倍数和因数评课稿5

  《因数和倍数》这一堂课在各个版本中的内容和学习目标都存在着差异。今天听了《因数和倍数》的不同上法,结合自己先前对教材的认识与设计,现在比较着来谈谈听完课后的一些感想。

  1、新旧链接,揭示概念。

  支老师在充分估计学生思维能力的基础上,运用已有的数学知识,让学生建立了“因数与倍数”的概念。如:课的开始,支老师从操作活动把12个小正方形摆成不同的长方形引入,同时训练孩子的空间思维能力,在不动手操作的情况下,用一个简单的算式表达自己的思维过程。让学生说出不同的乘法算式,从而导出倍数和因数的概念。在概念的揭示过程中。让学生自主体验数与形的结合,进而形成因数与倍数的意义。如当得出2×6=12时,引导学生充分练说,“12是6的倍数,12也是2的倍数,6和2都是12的因数”,让学生读读、想想这几句话的意思,初步感受倍数和因数的意义是与乘法有联系的,表达的是自然数之间的关系;接着要求学生根据12×1=12、3×4=12说说哪一个数是哪一个数的倍数(或因数),在迁移中进一步认识倍数和因数的意义。其中12是12的因数、1是12的因数,12是12的倍数等特例,为后面的教学扫除难点。这一环节借助有意义的操作和想象活动,由形到数,再由数到形,学生自主体验其中的因倍关系,为倍数因数概念的引入打下了坚实的基础,数形结合的思想得到了较好的体现。

  2、找准机会,渗透方法。

  在新知教学中,支老师注重学生的探究,渗透数学思想方法的教学,发展思维。本节课中找一个数的倍数和因数,都有比较好的方法。如何通过学生的探究找到方法,成了教学的亮点。如“找36的因数”,应该说,找出36的几个因数并不难,难就难在找出36的所有因数。36有9个因数,如何有序地一个不漏地找出36的因数,我觉得对于刚刚认识因数概念的学生来说有一定的难度。教学中,支老师并没有急切地认定结果,也没有把方法简单地告诉学生,而是让学生**探究,在作业纸上**写出36的所有因数,教师则及时巡视并请学生将各种情况反馈在投影上。有用乘法找的,有有序找的,也有无序找而有遗漏的。教师引导学生对(有序和无序找的)各种方法作了比较,学生在比较、交流中感悟到有序思考的必要性和科学性。这是本节课新知探究阶段的思维交流。既是不断深化理解因数与倍数知识的过程,又是培养学生良好思维品质的过程。给学生**思考的空间,提出了各自的解法或见解,是思维独创性的培养;引导学生一对一对有序的找,或从1开始,用除法一个个去试,是思维条理性的培养;既有迁移于摆方块的形象思维,又有直接运用除法算式的抽象思维,或乘除法口诀的综合运用等,在感受解法多样性中,培养了学生思维的灵活性。在这里教师继续**学生“找到什么时候停?”让学生自然得出:找到两个因数非常接近时就不用再找了。这样一来对学生又是一个知识层面上的提高。

倍数和因数评课稿6

  这是一节概念课,关于“倍数和因数”教材中没有写出具体的数学意义,只是借助乘法算式加以说明,进而让学生探究寻找一个数的倍数和因数。

  听了X老师执教的《倍数和因数》,总体感觉本节课的教学中规中矩,目标基本达成、重点突出、难点突破、教法灵活、学法指导较到位、小组活动有效,在“因数和倍数”概念的学习过程中,重视师生情感的交流,注重每个学生的发展,较好地体现了“教师有效引导下学生自主探索”这一教学策略,遗憾的是教学时间分配不够合理。

  1、意义教学引导学生自主构建

  在多次的实践教学中,发现用12个完全相同的小正方形拼出一个长方形。对于四年级的学生来说非常容易。教材这样安排的目的,在于帮助学生有意识地感受1和12、2和6、3和4这几组数之间的有机联系。

  本课中,倍数和因数的意义教学分三个层次:①借助三个问题让学生通过实践操作,想像及大屏幕的直观演示,引导学生得出三道乘法算式,同时介绍倍数和因数的含义。②通过除法算式找因倍关系。③渗透倍数和因数的相互依存性。

  2、寻找一个数的因数和倍数的方法让学生自己生成

  在寻找一个数的因数和倍数的过程中。教师将学生推向发现与探索的前台,寻找一个数的倍数和因数,方法不是惟一的。教师在肯定各种方法合理性的同时,及时引导学生进行沟通,寻找它们的共同点和联系,进而比较各种方法之间的优劣,遴选最优方法,提升思维效率。

  3、合理**教材

  寻找一个数的因数是本节课的教学难点,学生往往满足于答案的寻找,而忽视寻找过程中的思考策略及思维方法。

  教学中,教师独具匠心,采用列表的方法找2、3、5的倍数,让学生概括一个数倍数的特征,并在此基础上学习一个数因数的特征,这样的改变,既达到预定目的,又为学习找因数做了铺垫,引发了学生寻找36的因数的浓厚兴趣。在汇报时,重点解决如何有序、不重复、不遗漏地找出一个数的因数。这样安排既留足了自主探究的空间,又在方法上有所引导,避免了学生的盲目猜测。在引导学生自主探索一个数的因数的特征时,教师让学生带着问题去观察讨论:每一个非零自然数的因数的个数是有限的还是无限的?一个非零自然数的最大因数是几?一个非零自然数的最小因数是几?以上安排,降低了学生的学习难度。

  4、增强游戏中数学思维的含量

  本节课以“有效引导下自主探索”为教学策略。以三道乘法算式为线索,以教材文本为依托,以有梯度的活动展开对知识的深化巩固,并适时、适量引入多**辅助教学,将诸多细小的认知活动归整在一个探究性的课堂自主研究活动中。通过自主观察、交流发现、共同分享,引领学生经历“研究与发现”的真实过程。课尾游戏的运用,激发了学生的学习热情,让学生以愉快的心情和良好的体验融入学习活动中,培养了学生用数学眼光看待游戏的意识,**降低了学生对数学概念学习的枯燥体验,让知识在游戏中深化,在挑战中升华。

  两点建议:

  1、要精心设计由易到难、由浅入深的练习促进理解,巩固新知,发展思维。由于时间分配不够合理,未能体现出练习的层次性。

  2、反馈渠道要畅通。要注重课堂反馈,找2和5的倍数反馈时不少学生只停留在乘法算式层面,说明教学找3的倍数时学法指导还不够到位。

倍数和因数评课稿7

  《因数和倍数》这一教学内容是一节概念课。教材在引入因数和倍数的概念时是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。数学中的“起始概念”一般比较难教,我创设有效的数学学习情境,数形结合,变抽象为直观。利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的概念。这样,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义。使学生初步建立了“因数与倍数”的概念。这样,用学生已有的数学知识引出了新知识,减缓了难度,这一环节的教学,我觉得还是收到了预设的效果。

  能不重复、不遗漏、有序地找出一个数的因数,是本课的教学难点。在教学中,我是这样设计的:在根据1×12=12,2×6=12,3×4=12三个乘法算式说出了谁是谁的因数、谁是谁的倍数后,教师紧接着**:12的因数有哪些?学生看着黑板上的算式很快地找出12的因数,接着再**:你是用什么方式找到12的因数的?在学生说出方法后,为了让学生探索出找一个因数的方法,我让学生自己找一找15的因数有哪些。预设在汇报时,能借此解决如何有序、不重复、不遗漏地找出一个数的因数。但在实际交流时,学生的方法出现了两种意见,并且各抒己见,因为15的因数只有两对,无论怎样找都不会遗漏。作为老师,我这时没有把我的意见强加给学生,而是以男女生比赛的形式,让学生分别找16、18的所有因数。由于部分学生运用从小到大一对一对地找很快找出这两个数的因数,另一部分却在无序的情况下,不是重复就是遗漏,这样在比较中,不重复、不遗漏、有序地找出一个数的因数的方法,学生就能够很好地接受并掌握。同时在练习中我设计了其中一道题是猜我的电话号码,激发起学生的兴趣,我是这样想的:重在培养学生善于联想,勇于探索的习惯。由个体现象联想到同类现象并能深入探索,这是创造的源泉。虽然在这个环节上花了比较多的时间,但对学生自主探索、自主学习起到了很好的促进作用。

  这节课另一个给我感触最深的是:就是在引导学生归纳总结出一个数的因数的特点时,由于及时跟上个性化的语言评价,激活了学生的情感,学生的思维不断活跃起来。借助这一学习热情让学生自己探索找一个数的倍数的方法。教师相信学生,学生学习兴趣更浓。不仅探讨出从小到大找一个数的倍数而且发现了倍数的特点。这一环节教学的成功,也使我改变了教学的观念——适时放手,会看到学生更精彩的一面。以后教学需大胆相信学生,深入钻研教材,既备教材又了解学情,作到收放自如,充分发挥学生的潜能。

  由于本节课的容量比较大,练习题设计综合性比较强,学生学得并不轻松,还存在一小部分学生没有很好地理解因数与倍数的关系。今后,应努力改进教学**,提高学困生的学习效率。

倍数和因数评课稿8

  我在教学因数和倍数时,我发现倍数和因数这一内容与原来人教版教材比有了很大的变化,人教版教材中是先建立整除的概念,在此基础上认识因数倍数。而这里的处理的方法有所不同,我在教学时做了一些下的改动,让学生用24张小正方形摆长方形,然后自己用算式把摆法表示出来。这样学生的算式就不仅限于乘法,有个别学生写了除法算式。这样学生很容易感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。因为现在我班也有个别学生在学**赛,所以我从整除的角度也介绍了因数与倍数的概念.

  由于这节的概念较多,因此有不少是由老师直接告知的,但这并不意味着学生完全被动的接受。如让学生思考:你觉得4和24、6和24之间有什么关系呢?(对乘除法学生有着相当丰富的经验,因此不少学生能说出倍数关系,可能说得不很到位,但那是学生自己的东西)。当学生认识了倍数之后,我进行了设问:24是4的倍数,那反过来4和24是什么关系呢?尽管学生无法回答,但却给了他思考和接受“因数”的空间,使学生体会到24是4的倍数,反过来4就是24的因数,接下来就是6和24的关系,同学们都争者要回答。

  如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己**找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:

  ①用什么方法找36的因数。

  ②如何找不重复也不遗漏。

  通过在小组交流的过程中,学生与学生之间对自己刚才的方法进行反思,吸收同伴中好的方法,这比老师给予有效得多。学生就这样轻松、愉快的学习了因数、倍数的有关知识。

倍数和因数评课稿9

  《倍数和因数》是我们工作室四月份研究的一个课例,我们是先抽签上二十分钟的课堂教学,再进行研讨,我们研究了每一部分的处理方法,同时,为了让我们的课堂更加连贯、自然,我们也研究了例题之间的过渡环节,尝试找到更加恰当的处理方法。那次研究之后我们工作室的每一位成员都根据自己的想法修改了教案。前几天我们工作室又在活动中**这节课,这次上课的是我,由于事先准备的不够充分课堂中发现了很多的问题,有上次研讨过还需要改进的问题,也有这次上课出现的新问题。课后工作室的成员给了我很多的很好的建议,我根据好的建议修改了我的教学设计,下面我来具体的说一说。

  1、情境导入。本节课的内容是《倍数和因数》为了让学生更清楚地感受倍数和因数的依存关系,我课上用了大头儿子和小头爸爸的例子,也用了我是老师,他们是学生的例子。但这两个例子对于本课的教学或许没有太多的意义,好像不能让学生明确感受出倍数的因数的依存关系,所以我们可以把这一部分的内容去掉,直接进入课堂,让学生进行操作活动。

  2、倍数和因数的意义。本课是想通过用12个完全相同的正方形拼成长方形的活动来让学生在活动中初步感知倍数和因数的关系,再用具体的例子向学生说明倍数和因数的含义。在课堂中我直接让学生进行操作,两人小组活动,试着摆一摆,看看有没有不同的摆法,在交流的时候让学生说说自己的摆法,每排摆了几个,摆了几排,怎样用乘法算式表示,再让学生有序地说一说,为后面找一个数的因数做好铺垫。再有一道具体的算式举例说明倍数和因数的含义,用我们过去学习的乘法算式中的乘数乘乘数等于积过渡到倍数和因数,再让学生说一说其他两道乘法算式。说完后再给学生一个提醒,并让学生再根据出示的算式说一说谁是谁的倍数和谁是谁的因数,最后的时候让学生自己写一个算式,并说一说。

  3、找一个数的倍数。这应该时本节课的重难点内容,在教学中一定要让学生说一说找倍数的方法,而我在上课的时候把这一个重要的部分一带而过,可以看出来很大一部分学生是没有掌握找倍数的方法的。所以我在思考这一难点该如何突破?是不是应让学生先**想一想办法,多说一说,给学生足够多的时间让学生去说自己用来找倍数的方法,这样多种方法出来以后,我们可以对方法进行优化,选择快速简单的找法。在教学的时候,同时注培养学生有序写出倍数,注意倍数书写的格式等意识,可以比较有序的找和无序的找,让学生自己感受有序的好处,学生有了有序地找的基本方法后,在进行练习的时候也会选择刚才优化过的好的方法进行练习。

  4、找倍数的特征。在完成找一个数的倍数之后,我们可以直接出示3,2,5的倍数是哪些,让学生观察三个倍数,再说一说自己的发现,放手让学生去找或许学生能够很快的找出来,但如果给好具体的问题,可能会限制一些学生的思考。如果学生在观察时没有发现我们所想要总结的特征,可以对学生进行适当的提示,让学生观察一个数最小的倍数,最大的倍数和倍数的个数等。先给学生足够的时间让学生自己去找,我们要相信他们藕能力做到。

  5、课堂常规的问题。在上课之前我应先确定好小组的具体分配,以免学生在小组活动中找不到合作的对象,如果上课之前具体的分好了,小组讨论的效率会高很多。在上课时,我要少说,把更多说的机会留给学生,让学生去表达自己的想法,同时还要相信学生,不要怕学生不会,而给出很多的条条框框,限制了学生的思维发展。

倍数和因数评课稿10

  总的感觉是上好一堂课不容易。当确定好内容后,我和吴艳、顾志成三人各自备课,第二天放学后化了整整一个半小时讨论教案,后又几经修改,但总感到时间来不及。倍数和因数是学生闻所未闻的两个新概念,是纯知识性的内容,学起来比较枯燥。如何使学生通过四十分钟愉快轻松的学习掌握这乏味的概念性内容,如何开头,各部分之间怎样衔接,每一个知识点采取何种形式呈现、展开,重点如何突出,难点如何突破,那几天这许多问题始终盘绕在脑海中,课上下来根据学生的参与情况,掌握程度可以说达到了教学目标。我觉得整个课堂教学注意了以下几点:

  1、捕捉生活与数学之间的联系,帮助学生理解概念间的关系。

  试上下来我感觉学生对倍数因数间的相互依存关系理解不到位,看着学生我突然想到可以利用学生乔雨雷、乔风光兄弟间的关系呀,于是我把生活中的相互依存关系迁移到数学中的倍数和因数,这样设计自然又贴切,既让学生感受到了数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,又帮助学生理解了倍数因数之间的相互依存关系。

  2、注意引导学生进行有效的合作学习。

  动手实践、自主探索、合作交流是新课程倡导的学习方式,公开课不管上的什么内容,不管有没有必要往往都要叫学生讨论,看起来热热闹闹,其实有多少学生真正参与了讨论。往往是一组中的优等生把答案说出,其他学生洗耳恭听。当3、2、5的倍数写出来后,我问:“整体观察这几个数的倍数,你认为一个数的倍数有什么特点?”首先问题有讨论的价值与必要性,其次当问题提出后我先让学生**思考,看到学生陆续举手时,再**学生讨论交流,完善自己的想法。(其实这是我一贯的做法,必须在每个学生**思考的基础上进行合作学习。)

  3、内容环环相扣、过度自然流畅。

  从生活中的相互依存关系迁移到数学中的倍数因数,从而揭示课题,引出谁是谁的倍数,谁是谁的因数,到找一个数的倍数或因数,归纳找的方法。整个教学过程环环紧扣、一气呵成,通达顺畅。

  4、练习设计由易到难,由浅入深,既巩固了新知,又发展了思维。

  “找朋友”游戏,答案不唯一,学生思考问题的空间很大,培养了学生的发散思维能力。让学生判断自己的学号数是哪些数的倍数,老师手里拿了2、3、5几张数字卡片,老师出示卡片,如果学生的学号数是老师出示卡片的倍数就可以***。最后留下了学号是1、7、11、13、17、19、23、29、31、37、41、43、47的学生,让学生想办法如果他们也要***,老师出示的卡片上应是几?学生面对问题积极思考,享受了数学思维的快乐。

  疑问:一开始的摆12个小正方形拼成长方形,得出三个积是12的乘法算式,我想这里的操作可否省去?一方面用去时间较多,对教学内容关系不大,如果说是培养操作能力也不是在这个时候。另一方面这堂课练习时间比较少,挤出的时间可用于练习。

  我想如果我们每堂课都能精心设计的话,对学生对我们教师都会有很大的提高。


倍数和因数评课稿10篇扩展阅读


倍数和因数评课稿10篇(扩展1)

——倍数和因数评课稿10篇

倍数和因数评课稿1

  听了刘老师的《3的倍数的特征》这堂课,收获颇多,尤其是在引导学生亲历探索3的倍数的特征的过程给我留下的印象很深。

  3的倍数的特征比较隐蔽,学生一般想不到从“各位上数的”去研究,本课注重引导学生经历探索的过程。上课开始先让学生写出了100以内3的倍数,然后让学生们猜测:“同学们,那你们猜猜看,3的倍数有什么特征呢?”猜测是一种常用的数学思考方法,让学生猜测3的倍数有什么特征,能较好地调动学生的学习积极性。由于受2的倍数和5的倍数的特征的影响,有学生只关注到数字的个位,很自然猜测到:“个位上是0、1、2、4、5、7、8、3、6、9的数一定是3的倍数”。

  老师对学生的猜想不作肯定或否定的回答,而是让学生借助摆棋子,自己通过实验来验证自己的猜想,刘老师先让学生确定一个3的倍数,如24,然后让学生自己摆棋子,十位摆的颗数,个位摆的颗数,共用颗数,这个时候学生就在十位摆2颗,个位摆4颗,共用了6颗棋子,然后再选好一个3的倍数,依次摆下去,学生在摆的过程中也渐渐的发现了蕴含在这中间的3的倍数的特征,最后在小结的过程中将十位摆的颗数、个位摆的颗数、共用颗数抽象成十位、个位、各个数位上的数字之和,而把棋子颗数抽象成各位上数的和,是理解3的倍数特征的关键,而刘老师只是稍稍引导学生,最后由学生交流,用语言概括出3的倍数的特征,整个过程清晰明了,体现了数学的严谨性和数学结论的确定性。在总结出3的倍数的特征后,老师又让学生举例来验证结论的正确性,加深学生对3的倍数的特征的理解。

  由此可以看出,猜想、验证、推理和交流是这节课采用的主要学习方式,而教师一直在学生中进行指导,使得小组合作式的探究更有实效,但个人认为,如果在学生动手摆棋子、探索规律的过程之前,教师先示范摆法,使学生的操作更有章有法,我相信学习效果可能会更加明显,总之,这是一堂值得去学习的课堂,在以后的教学中,我也会更多关注学生经历探索的过程。

倍数和因数评课稿2

  《因数和倍数》这一堂课在各个版本中的内容和学习目标都存在着差异。今天听了《因数和倍数》的不同上法,结合自己先前对教材的认识与设计,现在比较着来谈谈听完课后的一些感想。

  1、新旧链接,揭示概念。

  支老师在充分估计学生思维能力的基础上,运用已有的数学知识,让学生建立了“因数与倍数”的概念。如:课的开始,支老师从操作活动把12个小正方形摆成不同的长方形引入,同时训练孩子的空间思维能力,在不动手操作的情况下,用一个简单的算式表达自己的思维过程。让学生说出不同的乘法算式,从而导出倍数和因数的概念。在概念的揭示过程中。让学生自主体验数与形的结合,进而形成因数与倍数的意义。如当得出2×6=12时,引导学生充分练说,“12是6的倍数,12也是2的倍数,6和2都是12的因数”,让学生读读、想想这几句话的意思,初步感受倍数和因数的意义是与乘法有联系的,表达的是自然数之间的关系;接着要求学生根据12×1=12、3×4=12说说哪一个数是哪一个数的倍数(或因数),在迁移中进一步认识倍数和因数的意义。其中12是12的因数、1是12的因数,12是12的倍数等特例,为后面的教学扫除难点。这一环节借助有意义的操作和想象活动,由形到数,再由数到形,学生自主体验其中的因倍关系,为倍数因数概念的引入打下了坚实的基础,数形结合的思想得到了较好的体现。

  2、找准机会,渗透方法。

  在新知教学中,支老师注重学生的探究,渗透数学思想方法的教学,发展思维。本节课中找一个数的倍数和因数,都有比较好的方法。如何通过学生的探究找到方法,成了教学的亮点。如“找36的因数”,应该说,找出36的几个因数并不难,难就难在找出36的所有因数。36有9个因数,如何有序地一个不漏地找出36的因数,我觉得对于刚刚认识因数概念的学生来说有一定的难度。教学中,支老师并没有急切地认定结果,也没有把方法简单地告诉学生,而是让学生**探究,在作业纸上**写出36的所有因数,教师则及时巡视并请学生将各种情况反馈在投影上。有用乘法找的,(有用除法找的,)有有序找的,也有无序找而有遗漏的。教师引导学生对(有序和无序找的)各种方法作了比较,学生在比较、交流中感悟到有序思考的必要性和科学性。这是本节课新知探究阶段的思维交流。既是不断深化理解因数与倍数知识的过程,又是培养学生良好思维品质的过程。给学生**思考的空间,提出了各自的解法或见解,是思维独创性的培养;引导学生一对一对有序的找,或从1开始,用除法一个个去试,是思维条理性的培养;既有迁移于摆方块的形象思维,又有直接运用除法算式的抽象思维,或乘除法口诀的综合运用等,在感受解法多样性中,培养了学生思维的灵活性。在这里教师继续**学生“找到什么时候停?”让学生自然得出:找到两个因数非常接近时就不用再找了。这样一来对学生又是一个知识层面上的提高。

倍数和因数评课稿3

  这是一节概念课,关于“倍数和因数”教材中没有写出具体的数学意义,只是借助乘法算式加以说明,进而让学生探究寻找一个数的倍数和因数。

  听了X老师执教的《倍数和因数》,总体感觉本节课的教学中规中矩,目标基本达成、重点突出、难点突破、教法灵活、学法指导较到位、小组活动有效,在“因数和倍数”概念的学习过程中,重视师生情感的交流,注重每个学生的发展,较好地体现了“教师有效引导下学生自主探索”这一教学策略,遗憾的是教学时间分配不够合理。

  1、意义教学引导学生自主构建

  在多次的实践教学中,发现用12个完全相同的小正方形拼出一个长方形。对于四年级的学生来说非常容易。教材这样安排的目的,在于帮助学生有意识地感受1和12、2和6、3和4这几组数之间的.有机联系。

  本课中,倍数和因数的意义教学分三个层次:①借助三个问题让学生通过实践操作,想像及大屏幕的直观演示,引导学生得出三道乘法算式,同时介绍倍数和因数的含义。②通过除法算式找因倍关系。③渗透倍数和因数的相互依存性。

  2、寻找一个数的因数和倍数的方法让学生自己生成

  在寻找一个数的因数和倍数的过程中。教师将学生推向发现与探索的前台,寻找一个数的倍数和因数,方法不是惟一的。教师在肯定各种方法合理性的同时,及时引导学生进行沟通,寻找它们的共同点和联系,进而比较各种方法之间的优劣,遴选最优方法,提升思维效率。

  3、合理**教材

  寻找一个数的因数是本节课的教学难点,学生往往满足于答案的寻找,而忽视寻找过程中的思考策略及思维方法。

  教学中,教师独具匠心,采用列表的方法找2、3、5的倍数,让学生概括一个数倍数的特征,并在此基础上学习一个数因数的特征,这样的改变,既达到预定目的,又为学习找因数做了铺垫,引发了学生寻找36的因数的浓厚兴趣。在汇报时,重点解决如何有序、不重复、不遗漏地找出一个数的因数。这样安排既留足了自主探究的空间,又在方法上有所引导,避免了学生的盲目猜测。在引导学生自主探索一个数的因数的特征时,教师让学生带着问题去观察讨论:每一个非零自然数的因数的个数是有限的还是无限的?一个非零自然数的最大因数是几?一个非零自然数的最小因数是几?以上安排,降低了学生的学习难度。

  4、增强游戏中数学思维的含量

  本节课以“有效引导下自主探索”为教学策略。以三道乘法算式为线索,以教材文本为依托,以有梯度的活动展开对知识的深化巩固,并适时、适量引入多**辅助教学,将诸多细小的认知活动归整在一个探究性的课堂自主研究活动中。通过自主观察、交流发现、共同分享,引领学生经历“研究与发现”的真实过程。课尾游戏的运用,激发了学生的学习热情,让学生以愉快的心情和良好的体验融入学习活动中,培养了学生用数学眼光看待游戏的意识,**降低了学生对数学概念学习的枯燥体验,让知识在游戏中深化,在挑战中升华。

  两点建议:

  1、要精心设计由易到难、由浅入深的练习促进理解,巩固新知,发展思维。由于时间分配不够合理,未能体现出练习的层次性。

  2、反馈渠道要畅通。要注重课堂反馈,找2和5的倍数反馈时不少学生只停留在乘法算式层面,说明教学找3的倍数时学法指导还不够到位。

倍数和因数评课稿4

  《因数和倍数》整节课简明清晰,教师语言精练,始终为学生创造宽松的学习氛围。课前交流渗透人与人之间的关系,亲切,有效,让学生先在脑海中留下“相互依存”这种印象。为后面教学因数和倍数的概念,不能单独存在埋下伏笔。在教学中引导学生观察除法算式,放手让学生根据计算结果,按一定的标准给算式分类,在此基础上引出概念;结合算式,让学生说一说每个算式中谁是谁的因数,谁是谁的倍数,让学生在交流中掌握概念,进一步体会“因数与倍数是相互依存的”,突破了重难点。接着通过引导学生用一个式子来表示这样的除法算式,进而用字母陈述概念,帮助学生理解因数与倍数的本质意义,体会数学语言简单明了、高度概括的特点。

  练习设计体现了基础性、层次性和发展性。既巩固了对因数和倍数概念的理解,又把“倍数”与“几倍”,“因数”与乘法各部分名称的区别进行了辨析,很好地理解和巩固了概念。

  在学生的学习过程中,老师适时进行有效的评价,对小学生知识技能掌握和情感态度的发展有积极影响。整节课缺乏教师的即时性评价,对学生的行为表现没有给予及时的鼓励、调控和引导,特别是在学生回答出因数和倍数的相互依存关系,用“被除数÷除数=商”和“a÷b=c”表示这一类除法算式时,教师如果能适时地点拨激励,对于学生深入思考、增强自信心、激发学习兴趣将产生积极作用,而这些心理因素对学生取得新的进步又能起到推动作用,从而使学生进入一个不断发展的良性循环之中。

倍数和因数评课稿5

  本单元的重点是让学生掌握因数、倍数、质数、合数等概念,以及它们之间的联系和区别,内容较为抽象,为让学生理清各概念间的前后承接关系,达到融会贯通的程度,在学习《因数和倍数》这节课时,我注意做到以下几点:

  一、加强对概念间相互关系的梳理,引导学生从本质上理解概念。

  因数和倍数是最基本的两个概念,理解了因数和倍数的含义对于一个数的因数的个数是有限的、倍数的个数是无限的等结论自然也就掌握了。因此,教学时,我引导学生观察生活中的情景图引出乘法算式2×6=12,让学生在多说中体会、理解乘法算式中两数之间的因数与倍数的关系。学生在交流中轻松地理解了两数之间因数与倍数之间的关系,同时引出12的所有因数,让孩子感受到用乘法算式找一个数的因数的方法,为后面学习找一个数的因数做好铺垫。

  二,引导孩子在自主探究中学习新知

  在学习找一个数的因数时,让孩子们动脑思考,小组合作中探究方法,孩子们想出的方法很多,充分发挥了他们智慧,然后在老师的引导中优化了方法,孩子们在体验中逐步掌握了方法,学得深刻,方法熟练。

  三、注意培养学生的抽象思维能力

  教学中,注重学生的动脑思考、观察,让学生在自主的探究学习中表达自己的想法,通过一些特殊的例子,引导学生用数学的语言总结概括一些概念,逐步形成从特殊到一般的归纳推理能力。

倍数和因数评课稿6

  《倍数和因数》这一内容与原来教材比有了很大的不同,老教材中是先建立整除的概念,再在此基础上认识因数倍数,而现在是在未认识整除的情况下直接认识倍数和因数的。数学中的“起始概念”一般比较难教,这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。

  这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,这节课带给我的感想是颇多的,但综观整堂课,我觉得要改进的地方还有很多,我只有不断地进行反思,才能不断地完善思路,最终才能有所悟,有所长。下面就说说我对本课在教学设计上的反思和一些初浅的想法。

  比如在认识“因数、倍数”时,不再运用整除的概念为基础,引出因数和倍数,而是直接从乘法算式引出因数和倍数的概念,目的是减去“整除”的数学化定义,降低学生的认知难度,虽然课本没出现“整除”一词,但本质上仍是以整除为基础。本课的教学重点是求一个数的因数,在学生已掌握了因数、倍数的概念及两者之间的关系的基础上,对学生而言,怎样求一个数的因数,难度并不算大,因此教学例题“找出18的因数”时,我先放手让学生自己找,学生在**思考的过程中,自然而然的会结合自己对因数概念的理解,找到解决问题的方法(培养学生对已有知识的运用意识),然后在交流中不难发现可用乘法或除法来求一个数的因数(列出积是18的乘法算式或列出被除数是18的除法算式)。在这个学习活动环节中,我留给了学生较充分的思维活动的空间,有了**活动的空间,才会有思维创造的火花,才能体现教育活动的终极目标。

倍数和因数评课稿7

  北师大版五年级数学上、第三单元第一节《倍数与因数》是一节概念课。关于“倍数和因数”教材中没有写出具体的数学意义,只是借助乘法算式加以说明,进而让学生探究寻找一个数的倍数和因数。通过备课,我梳理出这样一个教学脉络:乘法算式——倍数和因数——乘法算式——找一个数的倍数。从教材本身来看,这部分知识对于五年级学生而言,没有什么生活经验,也谈不上有什么新兴趣,是一节数学味很浓的概念课。如何借助教材这一载体,让学生在互动、探究中掌握相应的知识,让乏味变成有味呢?我从以下两个方面谈一点教学体会。

  一、设疑迁移,点燃学习的火花。

  良好的开头是成功的一半。我采用一道脑筋急转弯题作为谈话引入课题,不仅可以调动学生的学习兴趣,看似不相关的两件事例中隐藏着共同点:一一对应、相互依存。对感知倍数和因数进行有效的渗透和拓展。

  教学找一个数的倍数时,我依据学情,设计让学生**探究寻找2的倍数、5的倍数,学生发现2的倍数、5的倍数写不完时,通过讨论,认为用省略号表示比较恰当,用语文中的一个标点符号解决了数学问题,自己发现问题自己解决,学生从中体验到解决问题的愉快感和掌握新知的成就感。

  二、渗透学法,形成学习的技能。

  由于一个数倍数的个数是无限的,那么如何让学生体会“无限”、又如何有序写出来呢?我让学生尝试说出3的倍数。学生找倍数的方法有:依次加3、依次乘1、2、3……、用乘法口诀等等。我**学生展开评价,有的学生认为:从小到大依次写,因为有序,所以觉得好;有的学生认为:用乘法算式写倍数,既快而且不受前面倍数的影响,可以很快地找到第几个倍数是多少,因为简捷正确率高所以觉得好。如此的交流虽然花费了“宝贵”的学习时间,但是学生从中能体会到学习的方法,发展了思维,这才是最宝贵的。正所谓没有一路上的山花烂漫,哪有山顶上的风光无限。

  三、学练结合,及时把握学生学情。

  在学生通过具体例子初步认识了倍数和因数以后,通过大量的练习让学生在练习中感悟,练习中加深理解概念;在探究出找倍数的方法以后,及时让学生写出2的倍数、5的倍数,从而引导学生发现一个数的倍数的特点,并适时进行针对性练习,巩固新知。

  课尾,我设计了四道达标检测练习,将整堂课的内容进行整理和概括,对易混淆的概念加以比较,对本节课重要知识点进行检测,及时掌握了学生的学情。

  纵观整节课,学生在学习过程中自始至终处于主体地位,尝试练习、自主探索、解决问题,教师只是加以引导,以合作者的身份参与其中。学生在思维上得到了训练,探究问题、寻求解决问题策略的能力也会逐步得到提高。

倍数和因数评课稿8

  《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。在以往的教材中,都是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基础上再引出因数和倍数的概念。而现在的人教版教材中没有用数学语言给“整除”下定义,而是利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的概念。我觉得这部分内容学生初次接触,对于学生来说是比较难掌握的内容。尤其对因数和倍数和是一对相互依存的概念,不能单独存在,不是很好理解。我通过捕捉生活与数学之间的联系,帮助学生理解因数倍数相互依存的关系。所以在上课之前我特意和孩子们玩了一个小游戏。用“我和谁是好朋友”这句话来理解相互依存的意思。即“我是谁的好朋友”,“谁是我的好朋友”,而不能说“我是好朋友”。学生对相互依存理解了,在描述因数和倍数的概念时就不会说错了。对于这节课的教学,我特别注意下面几个细节来帮助学生理解因数和倍数的概念。

  一是教材虽然不是从过去的整除定义出发,而是通过一个乘法算式来引出因数和倍数的概念,但本质**是以“整除”为基础。所以我上课时特别注意让学生明白什么情况下才能讨论因数和倍数的概念。我举了一些反例加以说明.二是要学生注意区分乘法算式中的“因数”和本单元中的“因数”的联系和区别。在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对于“积”而言的,与“乘数”同义,可以是小数,而后者是相对于“倍数”而言的,两者都只能是整数。三是要注意区分“倍数”与前面学过的“倍”的联系与区别。“倍”的概念比“倍数”要广。可以说“15是3的5倍”,也可以说“1.5是0.3的5倍”,但我们只能说“15是3的倍数”,却不能说“1.5是0.3的倍数”。我在课堂上反复强调,帮助孩子们认真理解辨析,所以学生一节课下来对这组概念就理解透彻了,不会模糊了。

倍数和因数评课稿9

  本单元的重点是让学生掌握因数、倍数、质数、合数等概念,以及它们之间的联系和区别,内容较为抽象,为让学生理清各概念间的前后承接关系,达到融会贯通的程度,在学习《因数和倍数》这节课时,我注意做到以下几点:

  一、加强对概念间相互关系的梳理,引导学生从本质上理解概念。

  因数和倍数是最基本的两个概念,理解了因数和倍数的含义对于一个数的因数的个数是有限的、倍数的个数是无限的等结论自然也就掌握了。因此,教学时,我引导学生观察生活中的情景图引出乘法算式2×6=12,让学生在多说中体会、理解乘法算式中两数之间的因数与倍数的关系。学生在交流中轻松地理解了两数之间因数与倍数之间的关系,同时引出12的所有因数,让孩子感受到用乘法算式找一个数的'因数的方法,为后面学习找一个数的因数做好铺垫。

  二,引导孩子在自主探究中学习新知

  在学习找一个数的因数时,让孩子们动脑思考,小组合作中探究方法,孩子们想出的方法很多,充分发挥了他们智慧,然后在老师的引导中优化了方法,孩子们在体验中逐步掌握了方法,学得深刻,方法熟练。

  三、注意培养学生的抽象思维能力

  教学中,注重学生的动脑思考、观察,让学生在自主的探究学习中表达自己的想法,通过一些特殊的例子,引导学生用数学的语言总结概括一些概念,逐步形成从特殊到一般的归纳推理能力。

倍数和因数评课稿10

  在上学期的白纸备课活动中,我们高年段数学抽到的教学内容就是因数与倍数,这个内容是我没有教过的,在看到教学内容时,我心里不禁在打鼓,我能找准教学重难点吗?能突破重难点吗?一连串问题涌了上来,最后我还是让自己冷静下来,静下心来认真分析教材,尽自己最大的努力梳理出教学重难点,创设情境、设计游戏来突出重点、突破难点。在设计完教学过程后,我也与同组的老师交流了活动体会。原来在老教材中没有因数这个概念,只有约数和倍数,而且是由整除的概念引入的,但因为我是第一次教学这个内容,很自然的就没有被以往教材的教学定式所束缚,尝到了新教材的甜头。现在刚好又教了这个内容,仔细参考了教学用书我才真正领悟到了新教材的新颖所在。

  新教材在引入因数和倍数的概念时与以往的教材有所不同。在以往的教材中,都是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除。在此基础上再引出因数和倍数的概念。实际上,由于乘除法本身就存在着互逆关系,用乘法算式(如b=na)同样可以表示整除的含义。因此,新教材中没有用数学化的语言给“整除”下定义,而是利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的概念。这样,学生不必通过12÷2=6得出12能被2整除,进而2是12的因数,12是2的倍数。再通过12÷6=2得出12能被6整除,进而6是12的因数,12是6的倍数,**简化了叙述和记忆的过程。在这儿,用一个乘法算式2×6=12可以同时说明“2和6都是12的因数,12是2的倍数,也是6的倍数。”

  这样的设计既减轻了学生的学习负担又让学生在学习时尽量避免出现概念混淆、理解困难的问题。学生对新知掌握较牢,在实际教学中我就是这样处理的,学生乐学,思路清晰。


倍数和因数评课稿10篇(扩展2)

——倍数和因数评课稿10篇

倍数和因数评课稿1

  骆老师能找准学生的知识起点,激活学生的学习经验。创设的情境合理:既能符合儿童心理有趣味,又能启发学生深入思考:这个活动或游戏隐藏了什么数学问题?能获得什么解决问题策略?每节课,学生都积极动手,主动合作,踊跃交流…。智慧的火花在课堂中不时闪现,愉悦的神情在小脸上洋溢。骆奇老师的教学内容是五年级的.“最小公倍数”,通过设计生动有趣的智力游戏“动物尾巴重新接回”创设情境激发兴趣,寻找公倍数与最小公倍数的奥秘。课堂围绕主要问题“尾巴重新接回的奥秘到底是什么?”引导学生展开积极的思考、热烈的讨论。老师以“为什么重新接回的次数就正好是多边形边数的公倍数呢?”激发学生创新思维,引导学生汇报交流,课堂结束后,学生与现场观众还沉浸在对“奥秘”的进一步思考中。

倍数和因数评课稿2

  听了刘老师的《3的倍数的特征》这堂课,收获颇多,尤其是在引导学生亲历探索3的倍数的特征的过程给我留下的印象很深。

  3的倍数的特征比较隐蔽,学生一般想不到从“各位上数的”去研究,本课注重引导学生经历探索的过程。上课开始先让学生写出了100以内3的倍数,然后让学生们猜测:“同学们,那你们猜猜看,3的倍数有什么特征呢?”猜测是一种常用的数学思考方法,让学生猜测3的倍数有什么特征,能较好地调动学生的学习积极性。由于受2的倍数和5的倍数的特征的影响,有学生只关注到数字的个位,很自然猜测到:“个位上是0、1、2、4、5、7、8、3、6、9的数一定是3的倍数”。

  老师对学生的猜想不作肯定或否定的回答,而是让学生借助摆棋子,自己通过实验来验证自己的猜想,刘老师先让学生确定一个3的倍数,如24,然后让学生自己摆棋子,十位摆的颗数,个位摆的颗数,共用颗数,这个时候学生就在十位摆2颗,个位摆4颗,共用了6颗棋子,然后再选好一个3的倍数,依次摆下去,学生在摆的过程中也渐渐的发现了蕴含在这中间的3的倍数的特征,最后在小结的过程中将十位摆的颗数、个位摆的颗数、共用颗数抽象成十位、个位、各个数位上的数字之和,而把棋子颗数抽象成各位上数的和,是理解3的倍数特征的关键,而刘老师只是稍稍引导学生,最后由学生交流,用语言概括出3的倍数的特征,整个过程清晰明了,体现了数学的严谨性和数学结论的确定性。在总结出3的倍数的特征后,老师又让学生举例来验证结论的正确性,加深学生对3的倍数的特征的理解。

  由此可以看出,猜想、验证、推理和交流是这节课采用的主要学习方式,而教师一直在学生中进行指导,使得小组合作式的探究更有实效,但个人认为,如果在学生动手摆棋子、探索规律的过程之前,教师先示范摆法,使学生的操作更有章有法,我相信学习效果可能会更加明显,总之,这是一堂值得去学习的课堂,在以后的教学中,我也会更多关注学生经历探索的过程。

倍数和因数评课稿3

  今天参加了县小学数学研究班下各组的业务培训活动,王薇薇老师上的《最小公倍数》(五下)一课给我留下了较深的印象。合理清晰的思路、简洁明亮的风格、灵活有效的调控,取得了较好的教学效果。

  一、谈话引入——自然贴切

  1、从春游话题引入信息:小兰想让爸爸妈妈带她去春游,四月一日起,妈妈每4天休息一天,爸爸每6天休息一天。

  2、讨论“每4天休息一天”的意思。

  3、出示问题:在这一个月里,他们可以选哪些日子去呢?

  这一情境的创设至少有三点好处:一是适时,三月底,正是春游的好时候;二是激趣,一家子出游是学生感兴趣的事件;三是切题,爸爸妈妈共同的休息日就是4和6的公倍数。

  二、建立概念——联系生活

  1、(一学生回答是12日或24日)问:你是怎样找到的?

  2、师生共同寻找:

  30以内4的倍数有:4、8、12、16、20、24、28(问:为什么要加“30以内”)

  30以内6的倍数有:6、12、18、24、30

  30以内4和6的公倍数有:12、24

  3、根据上面的信息,她们最早可以哪一天去?(这一生活问题对应的数学问题是“最小公倍数”是多少。)

  4、(4和6的最小公倍数有:12)在这里为什么不用加“30以内”?

  5、尝试用集合图来表示黑板上的内容。

  30以内4的倍数30以内6的倍数

  这一环节之后是否要拓展?如果把“30以内”去掉,集合图里的数据该怎样修改?省略号表示什么?(两个数的公倍数是无限的)

  三、探究求法——重视技能

  努力引导学生主动参与两个数最小公倍数的探究过程,重视数学技能的形成。特别是倍数关系和互质关系的两个数的最小公倍数的求法,让学生经历了猜测——举例验证——归纳的学习过程,学生思维活跃,如在找对象11和13的最小公倍数时,11的倍数从1倍找到11倍还能口算,老师问12倍不能口算怎么办,一生能够提出只要再加上11就行了。在求一般关系两数的最小公倍数时,引导学生归纳步骤:首先多写其中某一数的倍数,然后再写第二个数的倍数,当出现和第一个数相同时就是这两数的最小公总数了。

  其外,老师也非常重视书写格式的规范,虽会多花了点时间,也是一种好习惯。

  四、巩固提高——突出重点

  探讨一个问题:练习的侧重点应该是一般关系还是特殊关系两个数最小公倍数的求法?

  特殊关系两数的最小公倍数探究过程费时费力,但规律出来之后是容易掌握的,关键是在求之前先判断。一般关系在概念教学时就已完整呈现了方法,理解较方便,但从我们平时经验看,出错的往往是这一类。

  另外,照应开头,回归生活,也有补一些应用性的解决问题。

倍数和因数评课稿4

  《因数和倍数》这一堂课在各个版本中的内容和学习目标都存在着差异。今天听了《因数和倍数》的不同上法,结合自己先前对教材的认识与设计,现在比较着来谈谈听完课后的一些感想。

  1、新旧链接,揭示概念。

  支老师在充分估计学生思维能力的基础上,运用已有的数学知识,让学生建立了“因数与倍数”的概念。如:课的开始,支老师从操作活动把12个小正方形摆成不同的长方形引入,同时训练孩子的空间思维能力,在不动手操作的情况下,用一个简单的算式表达自己的思维过程。让学生说出不同的乘法算式,从而导出倍数和因数的概念。在概念的揭示过程中。让学生自主体验数与形的结合,进而形成因数与倍数的意义。如当得出2×6=12时,引导学生充分练说,“12是6的倍数,12也是2的倍数,6和2都是12的因数”,让学生读读、想想这几句话的意思,初步感受倍数和因数的意义是与乘法有联系的,表达的是自然数之间的关系;接着要求学生根据12×1=12、3×4=12说说哪一个数是哪一个数的倍数(或因数),在迁移中进一步认识倍数和因数的意义。其中12是12的因数、1是12的因数,12是12的倍数等特例,为后面的教学扫除难点。这一环节借助有意义的操作和想象活动,由形到数,再由数到形,学生自主体验其中的因倍关系,为倍数因数概念的引入打下了坚实的基础,数形结合的思想得到了较好的体现。

  2、找准机会,渗透方法。

  在新知教学中,支老师注重学生的探究,渗透数学思想方法的教学,发展思维。本节课中找一个数的倍数和因数,都有比较好的方法。如何通过学生的探究找到方法,成了教学的亮点。如“找36的因数”,应该说,找出36的几个因数并不难,难就难在找出36的所有因数。36有9个因数,如何有序地一个不漏地找出36的因数,我觉得对于刚刚认识因数概念的学生来说有一定的难度。教学中,支老师并没有急切地认定结果,也没有把方法简单地告诉学生,而是让学生**探究,在作业纸上**写出36的所有因数,教师则及时巡视并请学生将各种情况反馈在投影上。有用乘法找的,(有用除法找的,)有有序找的,也有无序找而有遗漏的。教师引导学生对(有序和无序找的)各种方法作了比较,学生在比较、交流中感悟到有序思考的必要性和科学性。这是本节课新知探究阶段的思维交流。既是不断深化理解因数与倍数知识的过程,又是培养学生良好思维品质的过程。给学生**思考的空间,提出了各自的解法或见解,是思维独创性的培养;引导学生一对一对有序的找,或从1开始,用除法一个个去试,是思维条理性的培养;既有迁移于摆方块的形象思维,又有直接运用除法算式的抽象思维,或乘除法口诀的综合运用等,在感受解法多样性中,培养了学生思维的灵活性。在这里教师继续**学生“找到什么时候停?”让学生自然得出:找到两个因数非常接近时就不用再找了。这样一来对学生又是一个知识层面上的提高。

倍数和因数评课稿5

  《因数和倍数》这一堂课在各个版本中的内容和学习目标都存在着差异。今天听了《因数和倍数》的不同上法,结合自己先前对教材的认识与设计,现在比较着来谈谈听完课后的一些感想。

  1、新旧链接,揭示概念。

  支老师在充分估计学生思维能力的基础上,运用已有的数学知识,让学生建立了“因数与倍数”的概念。如:课的开始,支老师从操作活动把12个小正方形摆成不同的长方形引入,同时训练孩子的空间思维能力,在不动手操作的情况下,用一个简单的算式表达自己的思维过程。让学生说出不同的乘法算式,从而导出倍数和因数的概念。在概念的揭示过程中。让学生自主体验数与形的结合,进而形成因数与倍数的意义。如当得出2×6=12时,引导学生充分练说,“12是6的倍数,12也是2的倍数,6和2都是12的因数”,让学生读读、想想这几句话的意思,初步感受倍数和因数的意义是与乘法有联系的,表达的是自然数之间的关系;接着要求学生根据12×1=12、3×4=12说说哪一个数是哪一个数的倍数(或因数),在迁移中进一步认识倍数和因数的意义。其中12是12的因数、1是12的因数,12是12的倍数等特例,为后面的教学扫除难点。这一环节借助有意义的操作和想象活动,由形到数,再由数到形,学生自主体验其中的因倍关系,为倍数因数概念的引入打下了坚实的基础,数形结合的思想得到了较好的体现。

  2、找准机会,渗透方法。

  在新知教学中,支老师注重学生的探究,渗透数学思想方法的教学,发展思维。本节课中找一个数的倍数和因数,都有比较好的方法。如何通过学生的探究找到方法,成了教学的亮点。如“找36的因数”,应该说,找出36的几个因数并不难,难就难在找出36的所有因数。36有9个因数,如何有序地一个不漏地找出36的因数,我觉得对于刚刚认识因数概念的学生来说有一定的难度。教学中,支老师并没有急切地认定结果,也没有把方法简单地告诉学生,而是让学生**探究,在作业纸上**写出36的所有因数,教师则及时巡视并请学生将各种情况反馈在投影上。有用乘法找的,有有序找的,也有无序找而有遗漏的。教师引导学生对(有序和无序找的)各种方法作了比较,学生在比较、交流中感悟到有序思考的必要性和科学性。这是本节课新知探究阶段的思维交流。既是不断深化理解因数与倍数知识的过程,又是培养学生良好思维品质的过程。给学生**思考的空间,提出了各自的解法或见解,是思维独创性的培养;引导学生一对一对有序的找,或从1开始,用除法一个个去试,是思维条理性的培养;既有迁移于摆方块的形象思维,又有直接运用除法算式的抽象思维,或乘除法口诀的综合运用等,在感受解法多样性中,培养了学生思维的灵活性。在这里教师继续**学生“找到什么时候停?”让学生自然得出:找到两个因数非常接近时就不用再找了。这样一来对学生又是一个知识层面上的提高。

倍数和因数评课稿6

  这是一节概念课,关于“倍数和因数”教材中没有写出具体的数学意义,只是借助乘法算式加以说明,进而让学生探究寻找一个数的倍数和因数。

  听了X老师执教的《倍数和因数》,总体感觉本节课的教学中规中矩,目标基本达成、重点突出、难点突破、教法灵活、学法指导较到位、小组活动有效,在“因数和倍数”概念的学习过程中,重视师生情感的交流,注重每个学生的发展,较好地体现了“教师有效引导下学生自主探索”这一教学策略,遗憾的是教学时间分配不够合理。

  1、意义教学引导学生自主构建

  在多次的实践教学中,发现用12个完全相同的小正方形拼出一个长方形。对于四年级的学生来说非常容易。教材这样安排的目的,在于帮助学生有意识地感受1和12、2和6、3和4这几组数之间的.有机联系。

  本课中,倍数和因数的意义教学分三个层次:①借助三个问题让学生通过实践操作,想像及大屏幕的直观演示,引导学生得出三道乘法算式,同时介绍倍数和因数的含义。②通过除法算式找因倍关系。③渗透倍数和因数的相互依存性。

  2、寻找一个数的因数和倍数的方法让学生自己生成

  在寻找一个数的因数和倍数的过程中。教师将学生推向发现与探索的前台,寻找一个数的倍数和因数,方法不是惟一的。教师在肯定各种方法合理性的同时,及时引导学生进行沟通,寻找它们的共同点和联系,进而比较各种方法之间的优劣,遴选最优方法,提升思维效率。

  3、合理**教材

  寻找一个数的因数是本节课的教学难点,学生往往满足于答案的寻找,而忽视寻找过程中的思考策略及思维方法。

  教学中,教师独具匠心,采用列表的方法找2、3、5的倍数,让学生概括一个数倍数的特征,并在此基础上学习一个数因数的特征,这样的改变,既达到预定目的,又为学习找因数做了铺垫,引发了学生寻找36的因数的浓厚兴趣。在汇报时,重点解决如何有序、不重复、不遗漏地找出一个数的因数。这样安排既留足了自主探究的空间,又在方法上有所引导,避免了学生的盲目猜测。在引导学生自主探索一个数的因数的特征时,教师让学生带着问题去观察讨论:每一个非零自然数的因数的个数是有限的还是无限的?一个非零自然数的最大因数是几?一个非零自然数的最小因数是几?以上安排,降低了学生的学习难度。

  4、增强游戏中数学思维的含量

  本节课以“有效引导下自主探索”为教学策略。以三道乘法算式为线索,以教材文本为依托,以有梯度的活动展开对知识的深化巩固,并适时、适量引入多**辅助教学,将诸多细小的认知活动归整在一个探究性的课堂自主研究活动中。通过自主观察、交流发现、共同分享,引领学生经历“研究与发现”的真实过程。课尾游戏的运用,激发了学生的学习热情,让学生以愉快的心情和良好的体验融入学习活动中,培养了学生用数学眼光看待游戏的意识,**降低了学生对数学概念学习的枯燥体验,让知识在游戏中深化,在挑战中升华。

  两点建议:

  1、要精心设计由易到难、由浅入深的练习促进理解,巩固新知,发展思维。由于时间分配不够合理,未能体现出练习的层次性。

  2、反馈渠道要畅通。要注重课堂反馈,找2和5的倍数反馈时不少学生只停留在乘法算式层面,说明教学找3的倍数时学法指导还不够到位。

倍数和因数评课稿7

  《因数和倍数》这一堂课在各个版本中的内容和学习目标都存在着差异。今天听了《因数和倍数》的不同上法,结合自己先前对教材的认识与设计,现在比较着来谈谈听完课后的一些感想。

  首先我说说这两堂课教学内容上的差异。第一堂课安排的教学内容有三部分。第一部分是认识因数和倍数,指导学生正确描述因数和倍数。其次安排的教学内容是找一个数的因数和倍数。第三部分是了解因数和倍数以及一个数的最大因数和最小倍数的特性。第二堂课先建立了整除的概念,理**尽和整除之间的关系,然后在整除的基础上认识因数和倍数,最后让学生学会描述因数和倍数。(即4句话:谁能被谁整除,谁能整除谁,谁是谁的倍数,谁是谁的约数。)

  接着我来说说自己的想法。

  第一堂课的上法比较严谨,通过教师的传授和学生的练习,相信大多数学生都能认识因数和倍数并能正确描述,同时也会找一个数的因数和倍数,能根据因数和倍数的特性解决问题。完成了本课的技能目标。在课中,教师让学生说得很充分,并有针对性的进行了练习,使学生扎实地掌握了知识,为后续的学习打下了结实的基础。

  在这一课的导入中,教师用乘算式,让学生先说一说各部分的名称,然后对7×3=21给出描述性的语句“我们说7是21的因数,3也是21的因数;21是7的倍数,21也是3的倍数。”这个导入,除了在乘法里出现了因数这个词和本课内容有关联外,其他关系并不大,用这样的练习作为切入点,它的用处并没有体现。

  其次,教师对学生提醒:“我们说的因数和倍数一般指的是整数,不包括0”,在这里,我觉得教师给出的定义一定要准确“我们说的因数和倍数都是指“0”以外的自然数。”说到这个0是否除外的问题,人教论坛上还有争议,因此对这个问题暂不考虑。在判断是否能说倍数和因数的练习题中,对于加和减题是否能说倍数和因数的判断,我觉得没有存在的必要。在这里教师设计的题“判断8÷4=2,4和2是8的因数,8是4和2的倍数这句话的对错”很有价值,让学生感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。

  第三,在找36的因数中,教师对找的方法进行了指导,要一对一对有序地找。在这里教师可以继续**学生“找到什么时候停?”让学生自然得出:找到两个因数非常接近时就不用再找了。这样一来对学生又是一个知识层面上的提高。

  第四,在最后的巩固练习中,有一题讲到一个数的最大因数和最小倍数的和是20,问学生这个数是多少。这题是学生对因数和倍数特性的反馈,在这题完成后,我想到了一个练习题“一个数最小的倍数是18,找出这个数的其他因数”,这样整合特性和找一个数的因数这两个知识点。还有一题在数轴上面标出3的倍数,在数轴下面标出4的倍数,这里出现共同的点,这样的话能否对公倍数适当地提点一下呢?让学生留点疑问结束课堂教学,为后一课的学习埋下伏笔。

  第二堂课的开始教师比较开放,让学生想一个除法算式,然后把这些出发算式归类,分类出除不尽和除尽,在除尽里再分出整除。这里充分发挥了学生的主体作用,教学的素材来源于学生自己,提高了学生的学习积极性。在对除尽的区分中,教师让学生用语言来描述除尽,我觉得对学生来说只要会辨别就行了,不需要要准确的语言去定义概念。教师给出的整除的概念不够严密,既然没有向学生说明整除所说的数都不包括0,那么在定义给出时,应向学生说明除0以外的自然数。

倍数和因数评课稿8

  我在教学因数和倍数时,我发现倍数和因数这一内容与原来人教版教材比有了很大的变化,人教版教材中是先建立整除的概念,在此基础上认识因数倍数。而这里的处理的方法有所不同,我在教学时做了一些下的改动,让学生用24张小正方形摆长方形,然后自己用算式把摆法表示出来。这样学生的算式就不仅限于乘法,有个别学生写了除法算式。这样学生很容易感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。因为现在我班也有个别学生在学**赛,所以我从整除的角度也介绍了因数与倍数的概念.

  由于这节的概念较多,因此有不少是由老师直接告知的,但这并不意味着学生完全被动的接受。如让学生思考:你觉得4和24、6和24之间有什么关系呢?(对乘除法学生有着相当丰富的经验,因此不少学生能说出倍数关系,可能说得不很到位,但那是学生自己的东西)。当学生认识了倍数之后,我进行了设问:24是4的倍数,那反过来4和24是什么关系呢?尽管学生无法回答,但却给了他思考和接受“因数”的空间,使学生体会到24是4的倍数,反过来4就是24的因数,接下来就是6和24的关系,同学们都争者要回答。

  如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己**找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:

  ①用什么方法找36的因数。

  ②如何找不重复也不遗漏。

  通过在小组交流的过程中,学生与学生之间对自己刚才的方法进行反思,吸收同伴中好的方法,这比老师给予有效得多。学生就这样轻松、愉快的学习了因数、倍数的有关知识。

倍数和因数评课稿9

  《倍数和因数》,由于之前没上过这册内容,在看完教材后就和同组的老师说,这个内容好像挺简单的。不过上完这节课后这个想法却烟消云散,根本没有想象的那么容易上,而且在课堂中存在了很多在预设中没有想到的问题。

  1.在第一个环节认识倍数和因数的意义中,首先让学生用12个同样大小的小正方形摆成一个长方形,并用乘法算式来表示你是怎么摆的,有几种不同的摆法?通过让学生动手操作实践,体现了以学生为本,而且能唤醒学生已有的知识经验,抽象为具体讨论的数学问题。在抽象出三个不同的乘法算式后,我以第一个乘法算式4×3=12为例,介绍倍数和因数的关系,本来以为说:“4和3是12的因数,12是4和3的倍数”应该是很简单的两句话,学生应该会说,可是当请学生来自己选择一个乘法算式来说一说时,好几个学生却被卡住了,还有的说成了4是12的倍数。

  针对学生出现的问题,我觉得可能是自己在介绍时运用的不到位,一个是比较小,后面的同学都没能看清楚;另一方面我预想的比较简单,所以说了一遍后也没请学生再复述一遍。在说到“谁是谁的倍数,谁是谁的因数”时应该在中相继出示这两句话,这样的话让学生看着说印象会更深刻,相信学生说的也会比较好。

  2.第二个环节是探求找一个数的倍数的方法,从上一个环节我最后出示的除法算式中引入:我们知道了18是3的倍数,那3的倍数是不是只有18呢?通过疑问来激发学生找出3的倍数有哪些?学生很快能找到,但是并没有找全,于是再问,那又什么办法把3的倍数找全呢?学生自然想到去乘1,乘2,乘3……,也就按顺序找到了3的倍数。在分别找到了2和5的倍数后我问学生:观察上面这几个例子,你有什么发现?请了好几个学生都没能找到,最后还是老师告诉了学生倍数最小是?最大呢?

  针对最后请学生找一找发现倍数的共同特点这一问题,我觉得我在设计时问题提得太大,太笼统。学生听到问题后可能无从下手,不知道该找什么。可以问:刚才找了2,3,5的倍数,观察这几个数的倍数,他们有什么共同特点?这样学生就会比较有针对性地去寻找结果。

  3.第三个环节是探求找一个数因数的方法,找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找一个数的因数,对于刚刚对倍数因数有个感性认识的学生来说有是一定困难的,而这个环节我处理的也不到位,学生对找一个数因数的方法掌握的不够好。

  我一开始设计请学生自主找36的因数,在巡视时发现有一部分学生没有头绪,无从下手,时间倒是花去了不少。所以我觉得是否可以先从12下手,因为前面一开始已经找过12的因数了,如果这里能用12做一下铺垫,可能找36的因数时就会好一些。

  在学生自主探索完36的因数有哪些后,交流不同学生的结果,有一位出现了1,36;2,18;3,12;4,9;6,6我就问你是怎么找到的?学生说是用除法找到的,于是就用36分别去除1,2,3……得到了36的因数。其实这里除了用除法来找之外,还可以用乘的方法来找,而乘的方法似乎对于学生来说在找得时候还更简单一点。更重要的是我觉得一对对的找对于找全一个数的因数是一个很重要的方法,而我却把这个方法忽略了,所以学生对于找一个数的因数的方法不够深刻,在练习中也发现做的不理想。

  4.第四个环节是巩固练习,我设计了2个小游戏。一个是看谁反应快,符合要求的请学生起立,这个游戏学生参与面广,学生也感兴趣,还从中发现了找谁的学号是几的因数,1每次都会起立,就更好的巩固了一个数的因数最小是1。但是也有个别学生反应比较慢。第二个小游戏是猜一猜老师的手机号码是多少?但是由于前面时间用的比较多,所以没来得及做。

  原本认为简单的课却一点都不简单,每个细小环节的把握都要求我去仔细的钻研教材,设计好每一步,这样才能上好一节课。

倍数和因数评课稿10

  在上学期的白纸备课活动中,我们高年段数学抽到的教学内容就是因数与倍数,这个内容是我没有教过的,在看到教学内容时,我心里不禁在打鼓,我能找准教学重难点吗?能突破重难点吗?一连串问题涌了上来,最后我还是让自己冷静下来,静下心来认真分析教材,尽自己最大的努力梳理出教学重难点,创设情境、设计游戏来突出重点、突破难点。在设计完教学过程后,我也与同组的老师交流了活动体会。原来在老教材中没有因数这个概念,只有约数和倍数,而且是由整除的概念引入的,但因为我是第一次教学这个内容,很自然的就没有被以往教材的教学定式所束缚,尝到了新教材的甜头。现在刚好又教了这个内容,仔细参考了教学用书我才真正领悟到了新教材的新颖所在。

  新教材在引入因数和倍数的概念时与以往的教材有所不同。在以往的教材中,都是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除。在此基础上再引出因数和倍数的概念。实际上,由于乘除法本身就存在着互逆关系,用乘法算式(如b=na)同样可以表示整除的含义。因此,新教材中没有用数学化的语言给“整除”下定义,而是利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的概念。这样,学生不必通过12÷2=6得出12能被2整除,进而2是12的因数,12是2的倍数。再通过12÷6=2得出12能被6整除,进而6是12的因数,12是6的倍数,**简化了叙述和记忆的过程。在这儿,用一个乘法算式2×6=12可以同时说明“2和6都是12的因数,12是2的倍数,也是6的倍数。”

  这样的设计既减轻了学生的学习负担又让学生在学习时尽量避免出现概念混淆、理解困难的问题。学生对新知掌握较牢,在实际教学中我就是这样处理的,学生乐学,思路清晰。


倍数和因数评课稿10篇(扩展3)

——《因数和倍数》评课稿3篇

《因数和倍数》评课稿1

  这是一节概念课,关于“倍数和因数”教材中没有写出具体的数学意义,只是借助乘法算式加以说明,进而让学生探究寻找一个数的倍数和因数。

  听了老师执教的《倍数和因数》,总体感觉本节课的教学中规中矩,目标基本达成、重点突出、难点突破、教法灵活、学法指导较到位、小组活动有效,在“因数和倍数”概念的学习过程中,重视师生情感的交流,注重每个学生的发展,较好地体现了“教师有效引导下学生自主探索”这一教学策略,遗憾的是教学时间分配不够合理。

  1、意义教学引导学生自主构建

  在多次的实践教学中,发现用12个完全相同的小正方形拼出一个长方形。对于四年级的学生来说非常容易。教材这样安排的目的,在于帮助学生有意识地感受1和12、2和6、3和4这几组数之间的有机联系。

  本课中,倍数和因数的意义教学分三个层次:

  ①借助三个问题让学生通过实践操作,想像及大屏幕的直观演示,引导学生得出三道乘法算式,同时介绍倍数和因数的含义。

  ②通过除法算式找因倍关系。

  ③渗透倍数和因数的相互依存性。

  2、寻找一个数的因数和倍数的方法让学生自己生成

  在寻找一个数的因数和倍数的过程中。教师将学生推向发现与探索的前台,寻找一个数的倍数和因数,方法不是惟一的。教师在肯定各种方法合理性的同时,及时引导学生进行沟通,寻找它们的共同点和联系,进而比较各种方法之间的优劣,遴选最优方法,提升思维效率。

  3、合理**教材

  寻找一个数的因数是本节课的教学难点,学生往往满足于答案的寻找,而忽视寻找过程中的思考策略及思维方法。

  教学中,教师独具匠心,采用列表的方法找2、3、5的倍数,让学生概括一个数倍数的特征,并在此基础上学习一个数因数的特征,这样的改变,既达到预定目的,又为学习找因数做了铺垫,引发了学生寻找36的因数的浓厚兴趣。在汇报时,重点解决如何有序、不重复、不遗漏地找出一个数的因数。这样安排既留足了自主探究的空间,又在方法上有所引导,避免了学生的盲目猜测。在引导学生自主探索一个数的因数的特征时,教师让学生带着问题去观察讨论:每一个非零自然数的因数的个数是有限的还是无限的?一个非零自然数的最大因数是几?一个非零自然数的最小因数是几?以上安排,降低了学生的学习难度。

  4、增强游戏中数学思维的含量

  本节课以“有效引导下自主探索”为教学策略。以三道乘法算式为线索,以教材文本为依托,以有梯度的活动展开对知识的深化巩固,并适时、适量引入多**辅助教学,将诸多细小的认知活动归整在一个探究性的课堂自主研究活动中。通过自主观察、交流发现、共同分享,引领学生经历“研究与发现”的真实过程。课尾游戏的运用,激发了学生的学习热情,让学生以愉快的心情和良好的体验融入学习活动中,培养了学生用数学眼光看待游戏的意识,**降低了学生对数学概念学习的枯燥体验,让知识在游戏中深化,在挑战中升华。

  5、两点建议:

  1、要精心设计由易到难、由浅入深的练习促进理解,巩固新知,发展思维。由于时间分配不够合理,未能体现出练习的层次性。

  2、反馈渠道要畅通。要注重课堂反馈,找2和5的倍数反馈时不少学生只停留在乘法算式层面,说明教学找3的倍数时学法指导还不够到位。


倍数和因数评课稿10篇(扩展4)

——《因数和倍数》教学设计10篇

《因数和倍数》教学设计1

  教学内容:

  苏教版小学数学四年级(下册)第70-72页。

  教学目标:

  1、使学生结合乘、除法运算初步认识倍数和因数的含义,探索求一个数的倍数和因数的方法。

  2、使学生在探索的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。

  3、增强学生学习数学的兴趣,感受到成功的快乐。

  教学重点:

  理解倍数和因数的含义,探索并掌握找一个数的倍数和因数的方法。

  教学难点:

  理解倍数和因数的含义及倍数和因数的相互依存关系。

  教学准备:

  学生:每人准备12个同样大小的正方形。教师:课件

  教学过程:

  一、认识倍数和因数

  1、提出活动要求:每一桌的同学合作,用12个同样大小的正方形拼成一个长方形,想想有几种不同的摆法,并用乘法算式把不同的摆法表示出来。看看哪桌的同学最快完成。

  2分组操作活动,师巡视指导。

  3、指名汇报,出示课件,全班交流。汇报时是引导学生根据“每排摆几个”“摆了几排”这两个问题说出三种不同的乘法算式。师提示:每排摆5个,能摆几排,明确只有这三种摆法。

  4、教学“倍数”和“因数”的概念。

  (1)结合4×3=12,说明12是4的倍数,12也是3的倍数,4和3都是12的因数。并板书。

  (2)齐读这三句话,板书课题:倍数和因数

  (3)指名看式子说。

  (4)请学生根据6×2=12和12×1=12两道算式,照样子说

  一说哪个数是哪个数的倍数?哪个数是哪个数的因数?

  追问:如果说12是倍数,3是因数,可以吗?为什么?

  明确:倍数和因数都是指两个数之间的关系,是相互依存的。

  教师指出阅读底注明确:为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。不是0的自然数,0要考虑吗?那从什么数开始。如1、2、3、4、5、6、7、8、9…….在小数和分数等其他数中就也没有倍数和因数的说法了。(可根据具体的算式说明,如0×3=0,1.5×2=3。)

  (5)练习:“想想做做”第1题。每位同学都各选一个乘法算式同桌之间互相说一说,

  三、探索找倍数和因数的方法

  1、探索找一个数的倍数的方法

  (1)提出问题:什么样的数会是3的倍数呢?明确:3的倍数是3与一个数相乘的积。你能找到多少个3的倍数?先让学生**思考,再**交流。

  (2)启发:谁能按从小到大的顺序有条理的说出3的倍数?根据什么样的乘法算式?明确:可以按从小到大的顺序,依次用1、2、3、4……与3相乘,每次乘得的积都是3的倍数。同时板书:

  3×1=(3)3×2=(6)……

  追问:能把3的倍数全部说完吗?应该怎样表示3的倍数有哪些呢?

  根据学生的回答课件演示:3的倍数有3、6、9、12、15……

  (3)完成后面的试一试。提醒学生注意有序的思考,并规范的表示出结果。

  (4)一个数的倍数的特点。

  **:观察上面的几个例子,你发现一个数的倍数有什么特点?根据学生的交流归纳:一个数的倍数中,最小的是它的本身,没有最大的倍数,一个数的倍数的个数是无限的。

  **:现在你能很快说出6的最小倍数是多少吗?10呢?

  2、探索找一个数的因数的方法

  (1)提出问题:什么样的数是36的因数?

  学生举例说明。明确:如果有两个数相乘的积是36,那么这两个数都是36的因数。

  板书()×()=36

  (2)**:你能找出36的所有因数吗?启发:要做到不重复,不遗漏,怎样才能有条理地找出36的所有因数?

  学生试着在练习本上列式找出。

  (3)学生汇报交流,根据学生的回答课件演示。

  (4)进一步启发:我们知道除法是乘法的逆运算,根据除法算式,也可以找一个数的因数。。根据36÷1=36可以找到1和36……

  请同学们看书71页,完成书上的填空。

  (5)完成“试一试”。提醒学生有序的思考,做到不重复,不遗漏。

  学生汇报,说说你是怎样找的。

  (6)观察发现

  **:观察上面的例子,你发现一个数的因数有什么特点?

  小结:一个数因数的个数是有限的,一个数的因数中,最小的是1,最大的是它本身。

  **:现在你能很快说出18的最小因数和最大因数是多少吗?25呢?

  四、巩固练习

  1、“想想做做”第2题。

  **学生读题,理解题意。表中每栏的应付元数各是怎样算出来的?他们都是4的什么数?你还能说出4的哪些倍数?能把4的倍数全部说完吗?

  2、“想想做做”第3题。

  **学生读题,理解题意。表中每栏的每排人数是各怎样算出来的?排数和每排人数都是24的什么数?

  五、全课总结

  这节课你学会了什么?

《因数和倍数》教学设计2

  一、教学内容

  1.因数和倍数

  2.2、5、3的倍数的特征

  3.质数和合数

  二、教学目标

  1.掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

  2.通过自主探索,掌握2、5、3的倍数的特征。

  3.逐步培养学生的数学抽象能力。

  三、编排特点

  1.精简概念,减轻学生记忆负担。

  (1)不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。

  (2)不再正式教学“分解质因数”,只作为阅读性材料进行介绍。

  (3)公因数、最大公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。

  2.注意体现数学的抽象性。

  数学知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。

  四、学情分析与教学建议

  1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。

  从因数和倍数的含义去理解其他的相关概念。

  2.要注意培养学生的抽象思维能力。

  第一课时:因数和倍数

  教学目标:

  1、学生掌握找一个数的因数,倍数的方法;

  2、学生能了解一个数的因数是有限的,倍数是无限的;

  3、能熟练地找一个数的因数和倍数;

  4、培养学生的观察能力。

  教学重点:掌握找一个数的因数和倍数的方法。

  教学难点:能熟练地找一个数的因数和倍数。

  教学过程:

  一、引入新课。

  1、出示主题图,让学生各列一道乘法算式。

  2、师:看你能不能读懂下面的算式?

  出示:因为2×6=12

  所以2是12的因数,6也是12的因数;

  12是2的倍数,12也是6的倍数。

  3、师:你能不能用同样的方法说说另一道算式?

  (指名生说一说)

  师:你有没有明白因数和倍数的关系了?

  那你还能找出12的其他因数吗?

  4、你能不能写一个算式来考考同桌?学生写算式。

  师:谁来出一个算式考考全班同学?

  5、师:今天我们就来学习因数和倍数。(出示课题:因数倍数)

  齐读p12的注意。

  二、新授:

  (一)找因数:

  1、出示例1:18的因数有哪几个?

  从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?

  学生尝试完成:汇报

  (18的因数有:1,2,3,6,9,18)

  师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

  师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

  2、用这样的方法,请你再找一找36的因数有那些?

  汇报36的因数有:1,2,3,4,6,9,12,18,36

  师:你是怎么找的?

  举错例(1,2,3,4,6,6,9,12,18,36)

  师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

  仔细看看,36的因数中,最小的是几,最大的是几?

  看来,任何一个数的因数,最小的一定是(),而最大的一定是()。

  3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自己的练习本上写一写,然后汇报。

  4、其实写一个数的因数除了这样写以外,还可以用集合表示:如18的因数

  1、2、3、6、9、18

  小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

  从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

  (二)找倍数:

  1、我们一起找到了18的因数,那2的倍数你能找出来吗?

  汇报:2、4、6、8、10、16、……

  师:为什么找不完?

  你是怎么找到这些倍数的?(生:只要用2去乘1、乘2、乘3、乘4、…)

  那么2的倍数最小是几?最大的你能找到吗?

  2、让学生完成做一做1、2小题:找3和5的倍数。

  汇报3的倍数有:3,6,9,12

  师:这样写可以吗?为什么?应该怎么改呢?

  改写成:3的倍数有:3,6,9,12,……

  你是怎么找的?(用3分别乘以1,2,3,……倍)

  5的倍数有:5,10,15,20,……

  师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示

  2的倍数3的倍数5的倍数

  2、4、6、8……3、6、9……5、10、15……

《因数和倍数》教学设计3

  一、教学过程:

  (一)动手操作,感受并认识因数与倍数。

  1、老师和同学们都在课前准备了几个小正方形,如果用这些小正方形拼成一个长方形,可以怎么拼?(让学生**拼摆)

  2、全班交流,请学生上黑板拼一拼,拼法用乘法算式表示出来。

  指出:有三种拼法,列出三个不同的乘法算式,今天我们研究的内容就藏在着三个算式中。

  3、教师选择一个算式指出4×3=12,4是12的因数,12是4的倍数,看这个算式还可以说:谁是谁的因数?谁是谁的倍数吗?

  4、揭示课题:倍数和因数。

  5、看其他两个算式,你还能说什么吗?你觉得哪个算式给你的感觉有些特别?

  6、自己写一个乘法算式,让你的同桌说一说谁是谁的因数,谁是谁的倍数,选一些特殊的例子:如0×8=0的形式16÷2=8。辨析:能不能说16是倍数,2是因数。

  7、完成想想做做(1)。

  8、完成想想做做(2)。(交流:应付元数与4元有什么关系?省略号表示什么意思?从这个省略好你知道了什么?)

  9、想想做做(3)。(从中发现了什么?24有那些因数?最大的是几?最小的是几?)

  (二)找倍数和因数。

  1、找一个数的倍数(让学生自己在纸上写,然后交流:你是怎么找的?)

  **:

  (1)3的最小的倍数是几?最大的呢?

  (2)3的倍数有无数个,那么该怎么表示?

  2、完成试一试。

  反思:怎样找一个数的倍数比较方便?一个数的倍数最小是几?找得到最大的倍数吗?

  3、找一个数的因数。

  先让学生**找36的因数,再进行交流。

  **:36最小的因数是几?最大的呢?怎样找才能保证不重复不遗漏?对好的方法及时的给以肯定。

  完成试一试

  4、**:15的最小因数是几?最大的因数是几?16呢?你有什么发现?

  5、巩固练习:

  (1)4的倍数有:

  (2)25以内4的倍数有:

  (3)30的因数有:

  (4)15的因数有:

  (三)课堂小结:略。

  (四)作业布置:

  1、6的倍数有:

  2、7的倍数有:

  3、100以内9的倍数有:

  4、24的因数有:

  5、11的因数有:

  二、教学反思:

  本节课重点围绕“理解倍数和因数的含义,能按要求找出一个数的倍数和因数”进行教学。在写一个数的倍数和因数时,要让学生经历探索的过程,在相互交流时,得出最优的方法,在探索倍数和因数的规律时,既不能让学生毫无目的的去探究,也不能把这个结论直接告诉学生。

  先出示一些具体的数,从这些具体的数的基础上进行探究,起到了较好的效果。在探究一个数的因数的方法时,先在前面孕伏着除法中也有倍数和因数,为探究一个数的因数埋下了伏笔。这个方法要比倍数的方法难一些,教师要有耐心,把学生的方法全部板书在黑板上,然后通过比较,发现商也是这个数因数,又发现一个数的因数,是成队出现的,所以怎样做到既不重复,又不遗漏,就要有序思考,与前面学过的找规律的方法有机地联系在一起。

《因数和倍数》教学设计4

  教学内容:

  因数与倍数(P12-13例1及P15题1、2)

  教学目标:

  1、从操作活动中理解因数的意义,会判断一个数是不是另一个数的因数。

  2、培养学生抽象、概括与观察思考的能力,渗透事物之间相互联系,相互依存的辨证唯物**观点。

  3、培养学生的合作意识、探索意识以及热爱数学学习的情感。

  教学重点:

  理解因数的意义

  教学难点:

  能熟练地找一个数的因数。

  教具准备:

  多**课件

  教学过程:

  一、引入新课:

  1、课件出示主题图,让学生各列一道乘法算式。

  2、师:看你能不能读懂下面的算式?

  出示:因为2×6=12

  所以2是12的因数,6也是12的因数;

  12是2的倍数,12也是6的倍数。

  3、师:你能不能用同样的方法说说另一道算式?你还能找出12的其他因数吗?

  (指名生说一说)

  4、你能不能写一个算式来考考同桌?学生写算式。

  5、师:今天我们就来学习因数和倍数。(板书课题:因数和倍数)

  齐读教材第12的注意。

  二、自学预设:

  1、仔细看例一,什么叫因数和倍数?像这样的乘除法算式中的三个数之间还有另一种说法,你想知道吗?

  2、怎样找因数?例如18,36的因数是什么?

  3、因数有什么特点?一个数的最小因数是多少?有几个因数?(举例说明)

  尝试练习

  试着完成P13的做一做练习

  三、认识因数与倍数,展示交流

  (一)找因数:

  1、出示例1:18的因数有哪几个?

  师:从12的因数可以看出:一个数的因数还不止一个,那我们一起找找看18的因数有哪些?

  学生尝试完成汇报:(18的因数有: 1,2,3,6,9,18)

  2、用这样的方法,请你再找一找36的因数有那些?

  汇报36的因数有: 1,2,3,4,6,9,12,18,36

  师:你是怎么找的?

  举错例(1,2,3,4,6,6,9,12,18,36)

  师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

  3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在练本上写一写,然后汇报。

  4、其实写一个数的因数除了这样写以外,还可以用集合表示。课件出示

  5、小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

  从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

  (二).我的质疑

  1.谁能举一个算式例子,并说说谁是谁的因数?

  2.讨论:0×3 0×10 0÷3 0÷10

  **:通过刚才的计算,你有什么发现?

  3.注意:(1)为了方便,在研究因数和倍数的时候,我们所说的数一般指的是整数,但不包括0。(2)这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式名称的“因数”,两者不能搞混淆。

  四、反馈检测

  1.下面每一组数中,谁是谁得因数?

  16和2 4和24 72和8 20和5

  2.下面得说法对吗?说出理由。

  (1)48是6的倍数

  (2)在13÷4=3……1中,13是4的倍数

  (3)因为3×6=18,所以18是倍数,3和6是因数。

  3、完成P15第2题

  学生自己**完成,讲评时让学生说一说,是怎么想的?

  五、课堂小结:

  我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

  板书设计: 因数和倍数

  18的因数有: 1,2,3,6,9,18

  一个数的因数::最小的是1,最大的是它本身。

《因数和倍数》教学设计5

  教学内容:

  青岛版教材小学数学五年级上册88—91页。

  教学目标:

  1、使学生初步认识因数和倍数的含义,探索求一个数的因数或倍数的方法,发现一个数的因数、倍数中最大的数、最小的数及其个数方面的特征。

  2、使学生在认识因数和倍数以及探索一个数的因数或倍数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平,对数学产生好奇心,培养学习兴趣。

  教学重点:

  理解因数和倍数的意义,探索求一个数因数或倍数的方法。

  教学难点:

  探索求一个数因数或倍数的方法。

  教具准备:

  多**课件、学生练习题

  教学过程:

  一、谈话导入。

  师:同学们看这是什么?

  生:小正方形。

  师:想不想知道王老师给大家带来了多少个这样的小正方形?

  生:想。

  师:多少个?

  生:12个。

  师:想一想你能不能把这12个完全一样的小正方形拼成一个长方形呢?

  生:能。

  【设计意图】:以学生熟悉情景引入,激发学生的好奇心。

  二、教学因数和倍数的意义

  师:增加一点难度,用一道算式说明你的想法,让其他同学猜一猜你是怎么摆的,好吗?

  生:好!

  学生汇报:

  生1:1×12=12

  师:他是怎么摆的?

  生:一行摆1个,摆了12行;也可以一行摆12个,摆1行。

  课件出示摆法。

  师:把第一种摆法竖起来就和第二种摆法一样了,我们把这两种摆法算作一种摆法。(用课件舍去一种)

  生2:2×6=12

  师:猜一猜他是在怎么摆的?

  生:一行摆2个,摆了6行;也可以一行摆6个,摆2行。

  师:这两种情况,我们也算一种。

  生3: 3×4=12

  师:他又是怎么摆的?

  生:一行摆3个,摆了4行;也可以一行摆4个,摆3行。

  师:还有其他摆法吗?

  生:没有了。

  师:对,如果把12个同样大小的正方形拼成一个长方形,就只有这三种摆法,大家千万不要小看了这三种摆法,更不要小看了这三种摆法下面的三道乘法算式,今天我们的新课就藏在这三道乘法算式里面。因数和倍数(板书课题)

  2.教学“因数和倍数”的意义。

  师:我们以3×4=12为例,在数学上可以说3是12的因数,4也是12的因数,12是3的倍数,12也是4 的倍数。这里还有两道算式,同桌两个同学先互相说一说谁是谁的因数,谁是谁的倍数。

  学生汇报:任选一道回答。

  生1:12是12的因数,1是12的因数,12是2的倍数,12是1的倍数。

  师:说的多好啊!虽然有点像绕口令,但数学上确实是这样的。我们再一起说一遍。

  师:还有一道算式,谁来说一说?

  生:2是12的因数,6是12的因数,12是2的倍数,12也是6的倍数。

  师明确:为了研究方便,我们所说的因数和倍数都是指自然数,(0除外)。

  师:通过刚才的练习,你有没有发现12的因数一共有哪些? (生边说老师边有序的用课件出示12的所有的因数。)

  师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。

  3、5、18、20、36

  【设计意图】让学生经历知识的形成过程。通过实际例子,让学生进一步理解,因数和倍数之间存在着相互依存的关系。

  三、教学寻找因数的方法。

  1、找一个数的因数。

  师:看来同学们对于因数和倍数已经掌握的不错了。不过刚才老师在听的时候发现一个奥秘,好几个数都是36的因数,你发现了吗?谁能在五个数中把哪些数是36的因数一口气说完?

  师:说出几个36的因数并不难,关键是怎样找的既有序又全面,有没有信心挑战一下?

  生:有。

  师:老师提个要求:

  1)、可以**完成,也可以同桌交流。

  2)、把这个数的因数找全以后,把你的方法记录在下面。并总结你是怎样找的。

  2、探索交流找一个数的因数的方法。

  找一名有**性的作业板书在黑板上。

  师:他找对了吗?

  生:没有,漏下了一对。

  师:为什么会漏掉?仅仅是因为粗心吗?

  生:不是,他没有按照一定的顺序找!

  师:那么要找到36所有的因数关键是什么?

  生:有序。

  师生共同边说边有序的把36的所有的因数板书出来。 师:还有问题吗?

  生:没有了。

  生:你们没有,老师有一个问题,你们为什么找到6就不再接着往下找了?

  生:再接着找就重复了。

  师:那么找到什么时候就不找了?

  生:找到重复了,就不在往下找了。

  师、生共同总结找因数的方法。(一对一对有序的找,一直找到重复为止)。

  师:有失误的学生对自己的错误进行调整。

  3、巩固练习。

  找出下面各数的因数。

  4、寻找一个数的因数的特点。

  【设计意图】放手让学生自主找一个数的因数,并总结找一个数因数的方法。学生非常喜欢,而且也能够让学生在活动中提升。

  四、教学寻找倍数的方法。

  1、找一个数的倍数。

  师:刚才我们学习了找一个数的因数,那么你能像刚才一样有序的找出一个数的所有倍数吗?

  生:能!

  师:试试看,找个小的可以吗?

  生:行!

  师:找一下3的倍数。30秒时间,把答案写在练习纸上。 ??

  师:有什么问题吗?

  生:老师,写不完。

  师:为什么写不完?

  生:有很多个!

  师:那怎么才能全都表示出来呢?

  生:可以加省略号。

  师:你太厉害了!你把语文上的知识都用**,太真聪明了!难道不该再来点掌声吗?

  师:谁能总结一下你是怎样找到的?

  生:从小到大依次乘自然数。

  师:你真会思考!

  课件出示3的倍数。

  2、找5、7的倍数。

  师:我们再来练习找一下5的倍数。

  生:5的倍数有:5、10、15、20、25??

  生:7的倍数有:7、14、21、28、35??

  师:你能像总结一个数因数的特点一样,来总结一下一个数的倍数有什么特征吗?

  生:能!

  学生总结:一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

  【设计意图】在探索求一个数的倍数和因数的方法时,创设具体的情境让学生去合作交流,并结合具体事例,让学生自己观察并发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征,丰富了教学方式,让学生在观察中发现,在合作中体验成功的喜悦,在主动参与、乐于探究中发展自我。

  四、知识拓展

  认识“完美数”。

  师:(课件出示6的因数)在6的因数中还藏着另外一个秘密,(这是孩子们都瞪大眼睛在看,在听!)我们把6的因数中最大的一个去掉,剩下1、2、3,然后把它们再加起来又回到6本身,数学家给这样的数起了一个名字,叫“完美数”。依次出示第二个、第三个一直到第六个完美数。

  小结:其实有关因数和倍数的秘密还有很多,它们在等待着同学们在以后的学习中去研究、去探索。

  【设计意图】丰富学生的知识,陶冶学生的情操。

  教学反思:

  找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里充分发挥小组学习的优势。先让学生自己**找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时如果再给予有效的指导和总结就更好了。

《因数和倍数》教学设计6

  教学目标:

  1、理解和掌握因数和倍数的概念,认识他们之间的联系和区别。

  2、学会求一个数的因数或倍数的方法,能够熟练的求出一个数的因数或倍数。

  3、知道一个数的因数的'个数是有限的,一个数的倍数的个数是无限的。

  教学重点:

  掌握找一个数的因数和倍数的方法。

  教学难点:

  理解和掌握因数和倍数的概念。

  教学准备:

  课件

  教学过程:

  一、创设情境,引入新课

  师:我和你们的关系是……?

  生:师生关系。

  师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。是啊,人与人之间的关系是相互的。再比如:我们班的曹雪飞与贺正博之间是同桌关系,他们之间的关系是相互依存的,不能单独存在,我们可以说曹雪飞是贺正博的同桌,或者说贺正博是曹雪飞的同桌,而不能说曹雪飞是同桌!在数学王国里,在整数乘法中也存在着这样相互依存的关系,这节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)

  (设计意图:先让学生体会关系,再通过同桌关系让学生体会相互依存,不能**存在,进而为因数与倍数的相互依存关系打下基础。)

  二、探究新知

  (一)1、出示主题图,仔细观察,你得到了哪些数学信息?

  学生说:图上有两行飞机,每行六架,一共有12架。(注意培养学生提取数学信息的能力和语言表达能力,即:数学语言要求简练严谨)

  教师 :你们能够用乘法算式表示出来吗?

  学生说出算式,教师板书:2×6=12

  2. 出示:因为2×6=12

  所以2是12的因数,6也是12的因数;

  12是2的倍数,12也是6的倍数。

  (注:由乘法算式理解因数和倍数相互依存,不能**存在。)

  3.教师出示图2:师:根据图上的内容,可以写出怎样的算式?

  3×4=12

  从这道算式中,你知道谁是谁的因数?谁是谁的倍数吗?(让学生自己说一说,进而加深因数倍数关系的认识。)

  教师小结:因数和倍数是相互依存的,为了方便,我们在研究因数与倍数时,我们所说的数是整数,一般不包括0.

  4、师:谁来说一道乘法算式考考大家。

  (指名生说一说)

  5、让其他学生来说一说谁是谁的因数谁是谁的倍数。

  (注:可以让几位学生互相说一说。)

  6、看来都难不住你们,那老师来考考你们:18÷3=6在这道算式中,谁来说说谁是谁的因数谁是谁的倍数。

  (设计意图:18÷3=6是为了培养学生思维的逆向性)

  (二)找因数:

  1、师:我们知道了因数与倍数之间的关系,从上面的研究中,我们还可以知道,一个数的因数还不止一个12的因数有: 1,2,3,4,6,12. 那么怎样求一个数的因数呢?

  出示例1:18的因数有哪几个?

  注意:请同学们四人以小组讨论,在找18的因数中如何做到不重复,不遗漏。

  学生尝试完成:汇报

  (18的因数有: 1,2,3,6,9,18)

  师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

  师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

  2、用这样的方法,请你再找一找36的因数有那些?

  汇报36的因数有: 1,2,3,4,6,9,12,18,36

  师:你是怎么找的?

  举错例(1,2,3,4,6,6,9,12,18,36)

  师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

  师:18和36的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

  请同学们观察一个数的因数有什么特点。

  在教师引导下,学生总结出:任何一个数的因数,最小的一定是( ),而最大的一定是( ),因数的个数是有限的。

  (设计意图:培养学生探索、归纳、总结、概括的能力。)

  3、其实写一个数的因数除了这样写以外,还可以用集合表示:如 18的因数

  1、2、3、6、9、18

  小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

  从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

  (三)找倍数:

  1、我们学会找一个数的因数了,那如何找一个数的倍数呢?2的倍数你能找出来吗?

  汇报:2、4、6、8、10、16、……

  师:为什么找不完?

  你是怎么找到这些倍数的?

  (生:只要用2去乘1、乘2、乘3、乘4、…)

  那么2的倍数最小是几?最大的你能找到吗?

  2、再找3和5的倍数。

  3的倍数有:3,6,9,12,……

  你是怎么找的?(用3分别乘以1,2,3,……倍)

  5的倍数有:5,10,15,20,……

  师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示 :2的倍数,3的倍数,5的倍数

  师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢? 让学生观察2、3、5的倍数,说一说一个数的倍数有什么特点。

  学生试着总结:一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

  三、课堂小结:

  通过今天这节课的学习,你有什么收获?

  学生汇报这节课的学习所得。

  四、拓展延伸。

  1、教材16页练**第5题。学生在小组中讨论交流:这四位同学的说法是否正确?为什么?

  2、教材第15页练**第1题。**学生**完成,然后在小组中互相交流检查。

《因数和倍数》教学设计7

  教学内容:

  教科书12---16页的学习内容

  教学目标

  通过对比学习,加深因数和倍数意义的理解,通过在意义、找的方法以及计数等几个方面对比,进一步理清因数与倍数的区别于联系,准确把握因数与倍数。

  教学重点:

  因数与倍数的对比。

  教学难点:

  用准确语言表达。

  教学准备:

  实物投影

  教学活动

  (一 )基础训练

  【口答】

  下面的说法对码?如果不对,请改正。

  (1)32÷4=8,所以42是倍数,4是因数

  (2)12的因数只有2、3、4、6、12

  (3)1是1,2,3,…的因数

  (4)60的最大因数和最小倍数都是60

  (5)5一共有10000个倍数

  (6)一个数的倍数一定大于它的因数

  【解答题】

  因数能否数完?倍数呢?

  (二) 新知学习

  【典型例题】

  1.分别找出16的因数和倍数

  2.仔细想想,找出16的所有因数和倍数的感受相同码?

  2.填表。

  不同方面联系

  意义寻找方法能否找完有无最大与最小表示

  因数

  倍数

  (三) 巩固练习(10题)

  【基础练习】

  1.选择正确答案的序号填在括号内。

  (1)下面算式中能表示63是7的倍数的算式是()

  ① 7×9=63 ② 63÷8=7……7 ③ 63÷21=3

  (2)9的因数有( )个

  ① 2 ② 3③ 4

  (3)不能够表示出“倍数”与“因数”关系的算式是()

  ① 19÷3 = 6……1② 24÷6=4 ③ 17×4=68

  【提高练习】

  1. 按要求写数

  6的倍数(写出5个) 32的所有因数 120的所有因数

  2.练一练第7题。

  教师可以鼓励学生课后查阅相关资料,把数学学习由课堂引申到课外。

  通过本题计算在月球和火星上的体重,激发学生的好奇心,进行保护地球的环保教育

  3.填表。

  (1)48个同学表演团体操,把队伍的排列情况填写完整。

  排数123456789

  每排人数4824

  每排都是48的因数码?

  (2)乘坐碰碰车每人应付8元,你能把表填完整码?

  乘坐人数12345……

  应付元数816

  【拓展练习】

  1.填数。

  2.五年(1)班同学参加植树活动,要植树24棵,如果要求每行植树的棵树相同,有几种不同的植法?如果要50棵树呢?

  向学生简介林可以植树的好处,净化空气,还可以降低噪音,美化环境的功效。

  (五)教学效果评价(小测题2—3题)

  1.24的因数有哪些?

  2.36是哪些数的倍数?

  课后反思:

  通过引导学生从一个数的倍数的定义出发,推出该数和任意非零自然数之积都是该数的倍数。2的倍数也就是2和任意非零自然数的乘积,学生在列乘法算式时发现这样的算式是列不完的,总结出2的倍数的个数是无限的。进而推倒出:一个数的倍数的个数是无限的。只有最小的倍数,没有最大的倍数。学生亲历了知识的形成过程,既探究了知识,又形成了总结概括的能力。

《因数和倍数》教学设计8

  教学内容:

  人教版小学数学第十册教材12-13>

  教学要求:

  1、 通过学生自学让学生理解掌握因数和倍数的意义,明确因数和倍数是相互依存的。

  2 、通过学生合作学习,让学生掌握找一个数的因数的方法。

  3、 培养学生的自学能力、观察能力、抽象概括能力以及学生的合作探究能力。

  4 、培养学生的合作意识、探究意识、以及热爱学习数学的情感。

  教学重点:理解因数和倍数的意义

  教学重点:掌握找一个数因数的方法

  教学过程:

  一 、创设情境,引入新课

  师:同学们,你们喜欢唱歌吗?

  生:喜欢。

  师:今天老师特别想听一首歌《世上只有妈妈好》,你们愿意唱给老师听吗?

  生:(可以)生唱。

  师:谁愿意介绍一下自己妈妈姓什么吗?

  生:我妈妈姓马。

  师:我们叫她马阿姨可以吗?

  生:可以。

  师:你能用马阿姨和陈果说一句话吗?

  生:马阿姨是陈果的妈妈,陈果是马阿姨的儿子。

  师:能不能单独的说马阿姨是妈妈,陈果是儿子?

  生:不能。因为他们不能分开,必须说谁是谁的妈妈,谁是谁的儿子。

  师:其实在数学中也有这样的两个数,它们是相互依存的,他们也是不能单独存在的,那就是——《因数和倍数》,今天我们一起来学习。

  师:板书因数和倍数。请同学们齐读课题。

  生:齐读课题

  师:读了课题你想知道什么?

  生1:想知道因数和倍数的意义。

  生2:怎样找一个数的因数。

  生3:怎样找一个数的倍数?

  ........

  师:这些问题是老师告诉你们,还是你们自己去学习?

  生:我们自己学习。

  【评析:用学生最熟悉的歌创设情境,既激发了学生的兴趣,又拉近了师生之间的距离,创设了一个宽松、**的氛围,以此从熟悉的母子或父子关系出发,让学生理解了相互依存的关系,为理解倍数和因数的相互依存关系作铺垫,体现了数学来源与生活。】

  二、自学引导

  1 、请同学们带着想知道的问题先自学教材12-13,然后完成学案一

  2 、检测自学情况

  (一)、填空

  (1) 3×4=12

  3是12的( ) 4也是12的( )

  12是3的( ) 12也是4的( )

  2×6=12

  2和6是12的( ) 12是2和6的( )

  1×12=12

  1和12是12的( ) 12是1和12的( )

  12的因数有:( )

  (2) a×b=c (a、b、c均为非零自然数)

  a是c的( ) b是c的( )

  c是a的( ) c是b的( )

  (二)、判断

  (1)、因为0.8×5=4 所以0.8是4的因数。( )

  (2)、因为3×6=18 所以18是倍数,3和6是因数。( )

  (3)、因为24÷6=4所以24是6的倍数,4是24的因数。

  (生自学并完成学案一,师指导)

  师:有谁愿意把你的学习作品展示大家。

  生:展示学习作品。

  师:看了张江楠的学习作品你想说点什么?(没有学生举手)你们没有问题,那老师有问题请教你们了。

  师: 在 a×b=c 中, 为什么a、b、c均为非零自然数?

  生:为了方便,我们研究因数和倍数只是整数(不包括零)

  师:请同学齐读这句话。

  生:齐读

  师:因为0.8×5=4 所以0.8是4的因数。( )这句话对吗?

  生:不对,因为0.8是小数不是整数。

  师:因为3×6=18 ,所以18是倍数,3和6是因数。( )这句话对吗?

  生:不对,因为因数和倍数是相互依存的,是不能单独存在的。

  师:因为24÷6=4所以24是6的倍数,4是24的因数。

  生:对

  师:请读 a×b=c (a、b、c均为非零自然数)

  a是c的( 因数 ) b是c的( 因数 )

  c是a的(倍数 ) c是b的( 倍数 )

  生:齐读。

  师:通过你们的自学初步理解因数和倍数的意义。你们会找一个数的因数吗?

  生:会

  师:我们试试行吗?

  生:行

  师:来个大的,还是小的。

  生:来个大的。

  师:30可以吗?

  生:可以

  师:学号是30的因数的请起立,(不完整)看来找一或几个不难,要找得既准确又完整,就需要方法了。你们有没有信心自己去探究。

  生:有

  师:那好,你们4人小组合作找出30的因数,并完成学案二。

  【评析:把课堂留给学生,让学生通过自学完成学案,体现了学在前,老师指导在后,充分让学生**思考,获取知识。这样通过自学----完成学案---适时指导,让学生真正成为学习的主人,理解因数和倍数的意义。】

  三 、合作学习探究找一个数因数的方法

  1 、小组合作找出30的因数有哪些?(有乘法和除法两种,用你们最喜欢的方法)。再组内讨论以下三个问题

  ( )×( )=( )

  ( )×( )=( )

  ( )×( )=( )

  ( )×( )=( )

  ........

  30的因数有:( )

  ( )÷( )=( )

  ( )÷( )=( )

  ( )÷( )=( )

  ( )÷( )=( )

  ........

  30的因数有:( )

  (1)你们是怎样找一个数的因数的?

  (2)你们找一个数的因数是怎样才能做到既准确,又完整的?

  (3)你们找一个数的因数是找到什么时候为止?

  2、小组汇报

  生1:30的因数有(1 2 3 5 6 10 15 30)

  师:你是怎样找一个数的因数的?

  生1:1×30=30找到1 30

  2×15=30找到2 15

  3×1030找到3 10

  5×6=30找到5 6

  生2::30÷1=30找到1 30

  30÷2=15找到2 15

  30÷3=10找到3 10

  30÷5=6找到5 6

  ........

  生5:从1开始去乘一个数等于30的两个数就是30的因数。

  生6:用30除以1到它本身能整除的就是30的因数。

  生7:从1开始有序成对找到重复或接近为止

  3 、引导学生总结找一个数因数的方法

  从1开始用乘法或除法有序成对的找,找到重复或接近为止。

  【评析:找一个数的因数级发及发现归纳其特点,教师让学生通过小组合作,相互评价,培养学生的合作意识,发挥学生的合作能力,归纳出找一个因数的方法,充分体现了学生是主体。】

  四、目标检测

  1、 找36、28的因数

  (采用师生对口令方法,强调重复写一个)

  2、先找出下列各数的因数,再观察这几组数据你有什发现写在括号里。

  8的因数有:( )

  11的因数有:( )

  15的因数有:( )

  24的因数有:( )

  你的发现是( )

  3你的学号是( )

  你学号的因数有( )

  学生完成后展示学习作品并汇报

  生1:我发现了每个数的因数都有1。

  生2::我发现了每个数的因数都有他本身。

  ........

  生6:我发现了一个数的因数最小是1,最大是它本身。

  生7:我发现了一个数的因数的个数是有限的,因为一个数的因数最小是1,最大是它本身

  生齐读一个数的因数最小是1,最大是它本身。一个数的因数的个数是有限的。

  4、游戏:

  师:学号是25的因数的同学请起立。

  学号是48的因数的同学请起立。

  学号是18的因数的同学请起立。

  1号你为什么不坐下

  生:因为1是所有自然数的因数,坐下了还要起立。

  师:同学们想挑战老师吗(想)比老师叫起立的人多。

  生1:30的因数

  生2:学号有两个因数的请起立。

  生3:学号有三个因数的请起立。

  ........

  生7:学号有因数1请起立。

  生8:学号因数最大是自己学号的请起立。

  【评析:找一个数的因数,归纳发现找因数的方法并不是难事,而对“一个数最大因数是它本身,最小因数是1”的理解有一定难度。教师在让学生做练习的同时发现规律,同时通过游戏加深了对知识的理解,在游戏中体会数学的乐趣。实现了巧练、活练,真正把数*用于生活。】

  五、总结反思

  1、这节课你有什么收获?

  2、如果还有不懂的小组内讨论。

  【总评析:本节课总的可用六个字来概括,“引拨补、疑思用”师,即,教师:引——拨——补;学生:疑——思——用。学生通过自学,教师引导,产生疑问,在教师的指引下进行小组合作探究、分析、领悟,再加上教师的点拨,让全体学生进行反思、掌握学法、建构数学模型,找一个数的因数的方法,让学生从感性认识——理性认识——实践运用——拓展提高,经历了学习数学的过程,真正体会了学习数学的乐趣。本节课“虽已毕,但趣犹在”,留给我们回味的很多。】

  板书设计:

  因数和倍数

  30的因数有:1 2 3 5 6 10 15 30

  有序 成对 准确 完整

《因数和倍数》教学设计9

  教学目标:

  1.通过动手操作和写不同的乘法算式,认识倍数和因数。

  2.依据倍数和因数的含义和已有的乘除法知识,自主探索并总结找一个数的倍数和因数的方法。

  3.在探索中,培养学生抽象,概括的能力,渗透事物之间相互联系、相互依存的辩证唯物**的观点。

  教学重点、难点分析:

  由于学生对辨析、理**尽和整除的关系、整除的两种读法等易混淆的概念,使学生明确了一个数是否是另一个数的倍数或因数时,必须是以整除为前提,因数和倍数是相互依存的概念,不能**存在。所以本节课的教学我把重点定位于理解因数和倍数的含义。教学难点是自主探索并总结找一个数的倍数和因数的方法。

  教学课时:

  人教版五年级下册第二单元《因数与倍数》第一课时

  教具学具准备:

  1.学生每人准备12个大小完全相同的小正方形,一张写有自己学号的卡片。

  2.教师准备多**课件。

  一、创设情景,明确探究目标

  师:人与人之间存在着许多种关系,我和你们的关系是……?

  生:师生关系。

  师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)

  1.操作激活。

  师:我们已经认识了哪几类数?

  生:自然数,小数,分数。

  师:现在我们来研究自然数中数与数之间的关系。请你们用12个小正方形摆成不同的长方形,并根据摆成的不同情况写出乘、除算式。

  2.全班交流。

  1×12=12 2×6=12 3×4=12

  12×1=12 6×2=12 4×3=12

  12÷1=12 12÷2=6 12÷3=4

  12÷12=1 12÷6=2 12÷4=3

  师:在这3组乘、除法算式中,都有什么共同点?

  生汇报。

  师:(指着第②组)像这样的乘、除法式子中的三个数之间的关系还有一种说法,你们想知道吗?请看课本p12。

  师:2和6与12的关系还可以怎样说呢?

  生:2和6是12的因数,12是2的倍数,也是6的倍数。

  师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?

  小组合作,交流汇报。

  师:说得真好,从上面3组算式中,我们知道1,2,3,4,6,12都是12的因数。

  揭示课题:今天我们要根据这些算式研究数学新本领。因数和倍数。

  师:你能不能用同样的方法说说另一道算式?

  (指名生说一说)

  师:你有没有明白因数和倍数的关系了?

  那你还能找出12的其他因数吗?

  3.举例内化:

  你能写出一个算式,让你的同桌找一找因数和倍数吗?(学生互说,教师巡视找出典型例子)

  4.下面的说法对吗?说出理由。

  (1)48是6的倍数。

  (2)在13÷4=3……1中,13是4的倍数。

  (3)因为3×6=18,所以18是倍数,3和6是因数。

  师:第(3)题有两种不同的意见,请反对意见的同学说说理由。

  生:因为没有说明18是谁的倍数,所以不对。

  师:你认为怎样说才正确呢?

  生:我认为应该这么说:18是3和6的倍数,3和6是18的因数。

  师强调:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数),也就是说:因数和倍数不能单独存在。

  二、自主探究,找因数和倍数

  1.拓展提升,主动建构:

  ⑴迁移尝试:请学生试着找出36的所有因数。

  ⑵交流方法:教师即时捕捉开发学生在课堂上的基础性教学资源,并及时创生为生成性的教学资源,引导学生在交流中评价,在评价中探究,在发现中建构。预计学生会有这样几种情况出现:一是写得多与少的区别,二是找的方法上的区别。具体表现为:一是无序、没有方法地写出了一些,如2,3,6,而且仅此写出了几个;二是有顺序地用乘法( )×( )=36的方法,一对一对地写出了1,36,2,18,3,12,4,9,6,但没有按照从小到大的顺序写;三是用除法36÷( )=( )的方法想,而且是有顺序地从小到大全部写出: 1,2,3,4,6,9,12,18,36。

  ⑶启迪思考:怎样找才能不重复不遗漏?

  小组合作,自主探究,汇报交流。

  找一个数的因数时要做到不重复也不遗漏,方法可以有:

  用乘法( )×( )=36的方法,一对一对地写;

  或者是用除法36÷( )=( )的方法想,而且是有顺序地从小到大全部写。

  36的因数有:1,2,3,4,6,9,12,18,36。(板书)

  ⑷试一试找20的所有因数。

  ⑸介绍36的因数的另一种写法----集合

  用集合形式写18的因数

  2.创设情境,自主探究:

  请学生写出6的倍数。预计学生在写6的倍数时,会有这样几种情况出现:一是写得多与少的区别,二是找的方法上的区别。具体表现为:一是无序、没有方法地写出了一些,6二是有顺序地用乘法口诀写6,三是用加法的方法,每次递加6;四是用除法想,( )÷6=1、( )÷6=2、( )÷6=3的方法写。同时可能还会有学生在教师宣布时间到的时候会因为6的倍数写不完而抱怨时间太少。

  请写得又多又快的同学介绍自己的好方法、小窍门。在此基础上交流评价小结方法。(评价时突出有序思维的策略)

  3.迁移内化,自主探究:

  ⑴尝试迁移:请学生尝试迁移,用自己喜欢的方法写出2的倍数和5,4,7的倍数。

  2的倍数有:2,4,6,8,10,12……

  5的倍数有:5,10,15,20,25……

  ⑵引导观察:请学生观察以上这些数的倍数,有什么发现?

  (一个数的倍数的个数是无限的,一个数最小的倍数是它本身。)

  (3)还记得因数吗,出示课件

  观察:看一看这些数的因数,你有什么发现?(36最小的因数是1,最大的是36,……一个数最小的因数是1,最大的因数是它本身。)

  三、变式拓展,实践应用

  指导学生做书本“练**”的第2题和第3题。

  四、全课总结

  师:今天这节课我们一起学习了“约数和倍数”,你有哪些收获?

  课堂练习:游戏:“我的朋友在哪里?”

  游戏规则:(1)一位同学提出所要找的朋友的要求,例:“我的因数在哪里?”或“我的倍数在哪里?”(2)相应学号的同学***,其他同学判断是否正确。

  作业安排:

  引导学生根据实际猜老师年龄,给出范围:老师的年龄既是2的倍数也是5的倍数

《因数和倍数》教学设计10

  教学内容:

  北师大版数学实验教材五年级上册第一单元“倍数和因数”第三课时。

  教学目标:

  1、经历探索3的倍数的特征的过程,理解3的倍数特征,能判断一个数是不是3的倍数。

  2、培养学生分析、比较、猜想、验证的能力,提高学生的合情推理能力。

  教材分析:

  1、单元内容简介:

  本单元是在学生学过整数的认识,整数的四则计算,小数、分数、负数的认识等知识的基础上展开学习的。本单元的学习内容主要包括认识自然数和整数,倍数与因数,找倍数;2、5、3倍数的特征;找因数;质数与合数,奇数与偶数等知识,使知识进一步系统化。这些知识的学习是以后学习公倍数与公因数、约分、通分、分数四则计算等知识的重要基础。

  本单元的知识属于“数论”的初步知识,概念比较多,有些概念比较抽象,概念的前后联系又很紧密,部分学生学习时会有一定的困难。教材明确规定在研究倍数与因数时,限制在不是零的自然数范围内研究,避免由此而带来的一些小学生尚不必研究的问题。

  2、本节课内容简介:

  教材把课题确定为“探索活动(二)”,主要目的是要让学生经历探索知识的过程。教材首先提出“我们研究了2、5倍数的特征,那么3的倍数有什么特征呢?”的问题,目的是引导学生思考和探索3的倍数的特征。教学时,可以借助这个问题引导学生提出猜想。在探索3的倍数特征时,教材利用100以内的数表来研究,先让学生找出3的倍数,再观察特征,说说有什么发现,学生可能受知识迁移的影响去研究个位上的数与十位上的数,但都无法发现规律。适当的时候,教师可以作一定的提示:“将3的倍数每个数的各个数字加起来观察呢?”以帮助学生逐步发现规律。在初步得出结论的基础上,教师应进一步提出:“这个规律对三位数是否成立?”的问题,促使学生能自己找几个三位数来验证规律。需要注意的是在日常的练习与学习评价时,一般只要求学生判断100以内的3的倍数。

  学情分析:

  学生经历了课程**四年的时间,已经养成了动脑思考的习惯,能根据材料选择相关的信息进行讨论、交流与研究,积极进行小组合作,更为重要的是能把信息进行重新组合,从而选择有用的信息进行问题的研究。当一个挑战性的问题来临时,学生的表现一般是群情激昂,对数学问题有着浓厚的研究兴趣,可以说,学生有了一定的自学与研究能力。

  备课思路:

  1、借助学生的学习经验与基础,提出数学问题,引导学生猜测。

  2、利用100以内的数表,在猜测的基础上,研究并观察3的倍数的特征。

  3、通过直观学具的操作,进一步认识3的倍数的特征。

  4、引导学生验证发现的规律。

  5、在练习的基础上,运用3的倍数的特征去研究9的倍数的特征。

  活动过程:

  活动一:提出数学问题。

  (一)按要求组数。

  1、用3,4,5三个数字按要求组成三位数。

  (1)组成2的倍数。

  (2)组成5的倍数。

  2、学生用语言描述2,5的倍数的特征。

  一点想法:

  这个过程,比教材的要求要稍微高一点,教材上的要求一般是在100以内的数种研究2,5,3的倍数,这里面有一个考虑,拓展到三位数中来复习旧的知识,使复习起到桥梁的作用,进一步理解2,5的倍数的特征。

  (二)提出问题。

  1、能不能组成是3的倍数的三位数。

  2、3的倍数有什么特征?

  活动二:探索数学问题。

  (一)对学生猜想问题的处理。

  1、进行猜想。

  (1)学生面对问题进行猜想。

  (2)教师根据学生的猜想进行适当的引导。

  学生可能出现的情况:

  (1)猜测个位上是3,6,9的数是3的倍数。

  (2)个位上能被3整除的数能被3整除。

  2、探索猜想。

  (1)学生用3,4,5三个数字组成是3的倍数的三位数。

  (2)学生举例子:比如453,543。

  (3)学生如果出现345或354等例子,教师可以写在黑板上,不用多加评论,作为后续的学习内容。

  (4)在这个过程中,学生可能会得出猜想结论的成立,即:个位上是3,6,9的数是3的倍数。

  3、验证猜想。

  (1)让学生举例子对猜想的结论进行验证。

  (2)在这个过程中,学生可能会发现下面两种情况。

  ①15是3的倍数,但是个位上的数字是5,不是3,6,9。

  ②16个位上的数字是6,但是不是3的倍数。

  (3)猜想的结论不成立。

  (4)让学生对猜想的结论不成立这个问题,提出自己的想法。

  在讨论和交流中明白对于一个结论是否成立,只举一个正例是不够的,但是只要举出一个反例就可以**一个结论。

  (二)在质疑中引导学生探究3的倍数的特征。

  1、问题冲突:那么多的数,我们怎么找呢?我们要聪明的找,从比较小的数开始找。

  2、请在下表中找出3的倍数,并做上记号。

  (教师出示100以内数表,学生人手一张,在学生活动后,**学生进行交流,并呈现学生已圈出3的倍数的100以内数表,如下图)

  3、观察3的倍数,你发现了什么?与同桌交流一下。

  (1)在这个过程中,教师要作为一个倾听着,听学生有什么发现,有什么困惑。

  (2)学生发现个位上的数字没有什么规律,十位上的数字也没有什么规律。

  4、教师引领。

  (1)斜着观察,你发现了什么?

  (2)在学生观察思考的基础上,根据学生的实际情况提供新的思考点:将每个数的各个数字加起来试试看。

  5、得出结论。

  一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。

  6、验证结论。

  (1)利用100以内数表来验证。

  (2)延伸到三位数或更大的数。

  ①回到我们课始的问题,用学生写出的345或354等例子进行验证,

  ②写一个更大的数试试看。

  (3)完成课本第7页的试一试和练一练第1题和第2题。在学生**完成的基础上,进行讨论和交流。注意对学习困难学生的指导和帮助。

  活动三:拓展与延伸

  (一)回顾与反思

  (1)教师和学生一起回顾整节课的思考过程,一种学习方法的指导。

  (2)回顾学习的知识有哪些,再次进行整理与归纳。

  (二)完成实践活动

  1、猜想并验证9的倍数的特征。

  (1)学生阅读教材,按照教材上几个问题分层次展开研究。

  (2)个人**思考,小组研究的基础上进行全班的交流。

  特别说明:这个学习过程可能在课内完成不了,可以延伸到课外,让学生积极主动地进行探索与研究,一定让学生经历涂、画等过程,使学生获得真实的体验。


倍数和因数评课稿10篇(扩展5)

——因数和倍数教学反思10篇

因数和倍数教学反思1

  《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。在以往的教材中,都是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基础上再引出因数和倍数的概念。而现在的人教版教材中没有用数学语言给“整除”下定义,而是利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的概念。我觉得这局部内容同学初次接触,对于同学来说是比较难掌握的内容。尤其对因数和倍数和是一对相互依存的概念,不能单独存在,不是很好理解。我通过捕获生活与数学之间的联系,协助同学理解因数倍数相互依存的关系。所以在上课之前我特意和小朋友们玩了一个小游戏。用“ 我和谁是好朋友”这句话来理解相互依存的意思。即“我是谁的好朋友”,“谁是我的好朋友”,而不能说“我是好朋友”。同学对相互依存理解了,在描述因数和倍数的概念时就不会说错了。对于这节课的教学,我特别注意下面几个细节来协助同学理解因数和倍数的概念。

  一是教材虽然不是从过去的整除定义动身,而是通过一个乘法算式来引出因数和倍数的概念,但实质**是以“整除”为基础。所以我上课时特别注意让同学明白什么情况下才干讨论因数和倍数的概念。我举了一些反例加以说明。二是要同学注意区分乘法算式中的“因数”和本单元中的“因数”的联系和区别。在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对于“积”而言的,与“乘数”同义,可以是小数,而后者是相对于“倍数”而言的,两者都只能是整数。三是要注意区分“倍数”与前面学过的“倍”的.联系与区别。“倍”的概念比“倍数”要广。可以说“15是3的5倍”,也可以说“1。5是0。3的5倍”,但我们只能说“15是3的倍数”,却不能说“1。5是0。3的倍数”。我在课堂上反复强调,协助小朋友们认真理解辨析,所以同学一节课下来对这组概念就理解透彻了,不会模糊了。

因数和倍数教学反思2

  《因数和倍数》这部分资料学生初次接触,对于学生来说是比较难掌握的资料。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、决定,需要一个长期的消化理解的过程。

  同时这部分资料是比较重要的,为五年级的最小公倍数和最大公因数的学习奠定了基础。

  本节可充分发挥学生的主体性,让每个学生都能参加到数学知识的学习中去,调动学生学习的兴趣和主动性。本节课主要从以下几个方面进行教学的。

  一:动手操作探究方法。

  我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不一样的长方形,再让学生写出不一样的乘法算式,借助乘法算式引出因数和倍数的好处。这样在学生已有的知识基础上,从动手操作,直观感知,变抽象为具体。

  二、倍数教学,发现特点。

  利用乘法算式,让学生找出3的倍数,那里让学生理解:

  (1)3的倍数就应是3与一个数相乘的积。

  (2)找3的倍数是要有必须的顺序,依次用1、2、3……与3相乘。有了找3倍数的方法,在上学生找出2和5的倍数。这样即巩固对例题的理解,同时也为接下来的讨论倍数的特点奠定基础。最后让学生透过讨论发现:

  (1)一个数的倍数个数是无限的(要用省略号)。

  (2)一个数的最小倍数是本身,没有最大的倍数。

  三、因数教学,发现特点。

  找一个数因数的方法是本节课的难点。找一个数的因数的方法和倍数相似,大部分学生都用乘法算式寻找一个数的因数,那里教师能够透过几到有序排列的.除法算式启发学生进一步理解。强调有序(从小到大),不重复、不遗漏。随后让学生找出15、16的因数有那些。最后透过比较讨论让学生得出因数的特点:

  (1)一个数因数的个数是有限的。

  (2)一个数最小的因数是1,最大的因数是本身。(让学生明白所有的数都有因数1)。

  四、练习反馈状况

  从学生的作业状况来看,大部分学生掌握的还是不错的,有部分基础差的学生,有如下几点错误出现:

  1、倍数没有加省略号。

  2、分不清倍数和因数,倍数也加省略号,因数也加省略号。

  3、因数有遗漏的状况。从以上状况来看,在今后的教学中要多关注基础比较差的学生,注意补差工作;同时要注意教学中细节的处理。

因数和倍数教学反思3

  本节课是在学生已经学习了一定的整数知识的基础上进行教学的。

  课堂中,我首先让学生理解分类标准,明确因数和倍数的含义。在例1教学中,首先根据不同的除法算式让学生进行分类,同时思考其标准依据是什么。通过学生的**思考和小组交流学生得出:

  第一种是分为两类:

  一类是商是整数,另一类是商是小数;

  第二种是分为三类:一类商是整数,一类是小数,另一类是循环小数。究竟怎样分类让学生在争论与交流中达成一致答案分为两类。然后根据第一类情况得出倍数和因数的含义,特别强调的是对于因数和倍数的含义要符合两个条件:

  一是必须在整数除法中,

  二是必须商是整数而没有余数。具备了这两个条件才能说被除数是除数的倍数,除数是被除数的因数。

  其次,厘清概念倍数和几倍,注重强调倍数和因数的相互依存性。在教学中可以直接告诉学生因数和倍数都不能单独存在,不能说2是因数,12是倍数,而必须说谁是谁的因数,谁是谁的倍数。

  对于倍数与几倍的区别:倍数必须是在整数除法中进行研究,而几倍既可以在整数范围内,也可以在小数范围内进行研究,它的研究范围较之倍数范围大一些。

  本节课的不足之处:

  1、练习设计容量少了一些,导致课堂有剩余时间。

  2、对因数和倍数的含义还应该进行归纳总结上升到用字母来表示。

因数和倍数教学反思4

  通过今天的学习,你有什么收获?

  课后作业 :课后自已或与同学合作制作一个含有因数和倍数知识的转盘。

  教后反思:

  40分钟的时间一闪而过,轻松愉悦的课堂气氛,让学生的学习情绪空前高涨,学生的学习热情,学习过程中数学思维的提升,都在这短短的时间内让我感觉无尽的惊喜。

  课堂导入,亲切,有效,让学生先在脑海中留下“关系”这种印象,学生通过自己阅读明白谁是谁的因数,谁是谁的倍数,然后通过试一试、练习、特别是(8是倍数,4是因数…… 的辨析,让学生明白:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数)。

  因数和倍数不能单独存在。

  通过寻找一个数的因数,和一个数的倍数,让学生通过多个实例找到规律。

  在教学中由于过分依赖课件,致使有的环节没有深入,没有给学生时间进行

因数和倍数教学反思5

  1、倍数和因数这一内容与原来教材比有了很大的不同,老教材中是先建立整除的概念,在此基础上认识因数倍数。而这里的处理的方法有所不同,在这之前学生还没有学习小数乘除法,只接触过整数乘除法,因此教材通过用12个小正方形拼长方形并写乘法算式来引入因数和倍数。

  2、要求学生用乘法算式表示自己的长方形的不同摆法,帮助学生建立起乘法意义的表象,为后面利用乘法找因数和倍数埋下伏笔。

  3、重视说的训练,要求具体明确。“谁是谁的倍数,谁是谁的因数”当学生说到12*1=12时,感到有些拗口,教师即时鼓励,体现了数学的人文精神和不放过任何细节的作风。

  4、如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己**找36的因数,我巡视了一下五分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这不老师给予有有效得多。

  5、练习形式活泼多样,即颠覆传统又扎实训练。

因数和倍数教学反思6

  一、教材与知识点的对比与区别。

  1、对比新版教材知识设置与传统教材的区别。有关数论的这部分知识是传统教学内容但教材在传承以往优秀做法的同时也进行了较大幅度的改动。无论是从宏观方面——内容的划分还是从微观方面——具体内容的设计上都独具匠心。“因数与倍数”的认识与原教材有以下两方面的区别1新课标教材不再提“整除”的概念也不再是从除法算式的观察中引入本单元的学习而是反其道而行之通过乘法算式来导入新知。2“约数”一词被“因数”所取代。这样的变化原因何在教师必须要认真研读教材深入了解编者意图才能够正确、灵活驾驭教材。因此我通过学习教参了解到以下信息学生的原有知识基础是在已经能够区分整除与余数除法对整除的含义有比较清楚的认识不出现整除的定义并不会对学生理解其他概念产生任何影响。因此本教材中删去了“整除”的数学化定义。

  2、相似概念的对比。1彼“因数”非此“因数”。在同一个乘法算式中两者都是指乘号两边的整数但前者是相对于“积”而言的与“乘数”同义可以是小数。而后者是相对于“倍数”而言的与以前所说的“约数”同义说“X是X的因数”时两者都只能是整数。2“倍数”与“倍”的区别。“倍”的概念比“倍数”要广。我们可以说“1.5是0.3的5倍”但不能说”1.5是0.3的倍数”。我们在求一个数的倍数时运用的方法与“求一个数的几倍是多少”是相同的只是这里的“几倍”都是指整数倍。

  二、教法的运用实践

  1、“因数与倍数”概念的数的应用范围的规定直接运用讲述法。对与本知识点的概念是人为规定的一个范围因此对于学生和第一接触的印象是没有什么可以探究和探索的要求而且给学生一个直观的感受。“因数与倍数”的运用范围就是在非0自然数的范畴之内与小数无关与分数无关与负数无关虽没学但有小部分学生了解。同时强调——非0——因为0乘任何数得00除以任何数得0。研究它的因数与倍数是没有意义。我得到的经验就是对于数学当中规定性的概念用直接讲述法让学生清晰明确。因此用直接导入法先复习自然数的概念再写出乘法算式3×4=12说明在这个算式中3和4是12的因数12是3和4的倍数。

  2、在进行延续性教学中可以让学生探究怎么样找一个数的因数和倍数在板书要讲究一个格式与对称性这样在对学生发现倍数与因数个数的有限与无限的对比再就是发现一个数的因数的最小因数是1最大因数是其本身。

因数和倍数教学反思7

  《因数和倍数》是一节数学概念课,通过这个乘法算式直接给出因数和倍数的概念。这部分内容学生初次接触,对于学生来说是比较难掌握的内容。 数学课程标准“以人为本”的理念决定着数学教学目标的指向:适应并促进学生的发展。根据本节课知识的特点和学生的认知规律,我采用了角色转换、数形结合、合作学习等发展性教学**进行教学,在教学中我注重体现以学生为主体的新理念,努力为学生的探究发现提供足够的空间。在课堂中,我主要围绕以下几方面来进行教学:

  (1)捕捉生活与数学之间的联系,帮助学生理解因数倍数相互依存的关系。

  因数和倍数是揭示两个整数之间的一种相互依存关系,在课前谈话中我利用一个脑筋急转弯,渗透相互依存的关系。 通过生活中人与人之间的关系,迁移到数学中的数和数之间的关系,这样设计自然又贴切,既让学生感受到了数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发了对数学的兴趣,又潜移默化地帮助学生理解了因数倍数之间的相互依存关系。在教学中,也达到了预期的效果,学生对因数和倍数相互依存的关系理解的比较深刻。

  (2)角色转换,让学生亲身体验数和数之间的联系。

  因数和倍数这节课研究的是数和数之间的关系,知识内容比较抽象。因而,我采用了“拟人化”的教学**,每人一张数字卡片,学生和老师都变成了数学王国里的一名成员。当学生想回答问题时都会高高地举起自己的号码,整节课学生都沉浸在自己的角色体验中,学生都把自己当成了一个数。通过对自己一个数的认识,举一反三,从而理解了数与数之间的因数和倍数关系,既充分激发了学生的学习兴趣,又十分有效地突破了教学难点。

  (3)数形结合,让学生带着已有知识走进数学课堂。

  “数形结合”是一种重要的数学思想。对教师来说则是一种教学策略,是一种发展性课堂教学**;对学生来说又是一种学习方法。如果长期渗透,运用恰当,则使学生形成良好的数学意识和思想,长期稳固地作用于学生的数学学习生涯中。开课教师引导学生进行空间想象。

  (4)重组教材,根据学生的实际情况,多种形式探究找因数倍数的方法。

  教材上,探究因数这部分的例题比较少,只有一个:找18的因数。根据学生的实际情况,我进行了重组教材,先让学生根据乘法算式“一对对”地找出15的因数,在此基础上再让学生探究18的因数。通过“质疑”:有什么办法能保证既找全又不遗漏呢?让学生思考并发现:按照一定的顺序一对对的找因数,能既找全又不遗漏。进而又借助体态语言——打手势,让学生说出20和24的因数,达到了巩固练习的目的。这样设计由易到难,由浅入深,符合了学生的认知规律。而在探究倍数时,我则大胆的放手,让学生自主探索找一个数倍数的方法,给学生提供了广阔的思维空间。这样通过多种形式的教学,既激发了学生的学习兴趣,又极大地提高了课堂教学的实效性。

因数和倍数教学反思8

  本节课的内容是在学生已经学习了一定的整数知识(包括整数的知识、整数的四则运算及其应用)的基础上,进一步认识整数的性质。本单元所涉及的因数和倍数都是初等数论的基础知识。

  成功之处:

  1.理解分类标准,明确因数和倍数的含义。在例1教学中,首先根据不同的除法算式让学生进行分类,同时思考其标准依据是什么。通过学生的**思考和小组交流学生得出:第一种是分为两类:一类是商是整数,另一类是商是小数;第二种是分为三类:一类商是整数,一类是小数,另一类是循环小数。究竟怎样分类让学生在争论与交流中达成一致答案分为两类。然后根据第一类情况得出倍数和因数的含义,特别强调的是对于因数和倍数的含义要符合两个条件:一是必须在整数除法中,二是必须商是整数而没有余数。具备了这两个条件才能说被除数是除数的倍数,除数是被除数的因数。

  2.厘清概念倍数和几倍,注重强调倍数和因数的相互依存性。在教学中可以直接告诉学生因数和倍数都不能单独存在,不能说2是因数,12是倍数,而必须说谁是谁的因数,谁是谁的倍数。对于倍数与几倍的区别:倍数必须是在整数除法中进行研究,而几倍既可以在整数范围内,也可以在小数范围内进行研究,它的研究范围较之倍数范围大一些。

  不足之处:

  1.练习设计容量少了一些,导致课堂有剩余时间。

  2. 对因数和倍数的含义还应该进行归纳总结上升到用字母来表示。

  再教设计:

  1.根据课本的练习相应的进行补充。

  2.因数和倍数的含义用总结为a÷b=c(a、b、c均为非0自然数),a是b和c的倍数,b和c是a的因数。

因数和倍数教学反思9

  《数学课程标准》倡导“自主——合作——探究”的学习方式,强调学习是一个主动建构的过程。因此,应注重培养学生学习的**性和自主性,让学生在教师的指导下主动地参与学习,亲历学习过程,从而学会学习。

  1、以“理”为基点,将学生带入新知的学习。

  概念教学重在“理”。学生理解“因数”、“倍数”概念有个逐步形成的过程,为了促进这一意识建构,我先让学生通过自己已有的认知结构,经过“排列整齐的队形——形成乘法算式——抽象出倍数因数概念——再由乘法或除法算式——深化理解”,使学生在轻松、简约并充满自信中学习新知,在数与形的结合中,深刻体验因数倍数的概念。

  2、以“序”为站点,培养学生的思维方式。

  概念形成得在“序”。学生对于概念的形成是一个由表及里、由形象到抽象的过程。当学生对概念有了初步认识后,让学生探索如何找一个数的倍数的因数,这既是对概念内涵的深化,也是对概念外延的探索。这时思维和排列上的有序性是教学的关键,也是本节课的深度之一。在教学时,分为两个层次:第一个层次是让学生在已有的知识基础上找12的因数,并在交流中,经历了一个从无序到有序、从把握个别到统揽整体、从思维混沌走向思维清晰的过程。抓住教学的难点“如何找全,并且不重复不遗漏”,让学生**地说,再引导学生说出想的过程,并加以调整。表面看来仅仅是组合的变换,实质上是思维的提高和方法的优化,并让学生在对比中感受“一对一对”找因数的方法,经历了互相讨论、相互补充、对比优化的过程。第二个层次是在学生已经有了探索一个数因数的方法,具备了一定有序思考的能力之后,启发学生“能像找因数那样有序的找一个数的倍数”,提高了学生的思维能力。

  3、以“思”为落脚点,培养学生发现思考的能力。

  概念的生成重在“思”,规律的形成重在“观察”,教师如果能在此恰到好处的“引导”,一定会让学生收获更多,感悟更多。因此设计时,我借助了“找自己学号的因数和倍数”这个活动,在大量的有**性的例子面前,在学生亲自的尝试中,在有目的的对比观察中,学生的思维被逐步引导到了最深处,知道了一个数的'最大因数和最小倍数都是它本身,反过来也是正确的。教师在这里提供了有效的素材,可操作的素材,促使学生对所学的概念进行了有意义的建构,促进和发展了他们的思维。

因数和倍数教学反思10

  我执教的《因数和倍数》一节,是一节概念课。数学中的“起始概念”一般比较难教,我创设有效的数学学习情境,数形结合,变抽象为直观。首先以拼图比赛为素材,让学生动手操作快速把12个小正方形摆出一个长方形,再让学生用乘法算式表示出所摆的长方形,在交流中得到三种不一样的摆法和三种不一样的乘法算式。借助乘法算式引出因数和倍数的意义。这样,学生从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而构成因数与倍数的意义。使学生初步建立了“因数与倍数”的概念。这样,用学生已有的数学知识引出了新知识,减缓了难度,这一环节的教学,我觉得还是收到了预设的效果。

  能不重复、不遗漏、有序地找出一个数的因数,是本课的教学难点。在教学中,我是这样设计的:在根据1×12=12,2×6=12,3×4=12三个乘法算式说出了谁是谁的因数、谁是谁的倍数后,教师紧之后**:12的因数有哪些?学生看着黑板上的算式很快地找出12的因数,之后再**:你是用什么方式找到12的因数的?在学生说出方法后,为了让学生探索出找一个因数的方法,我让学生自我找一找15的因数有哪些。预设在汇报时,能借此解决如何有序、不重复、不遗漏地找出一个数的因数。

  但在实际交流时,学生的方法出现了两种意见,并且各抒己见,因为15的因数仅有两对,无论怎样找都不会遗漏。作为教师,我这时没有把我的意见强加给学生,而是以男女生比赛的形式,让学生分别找16、18的所有因数。由于部分学生运用从小到大一对一对地找很快找出这两个数的因数,另一部分却在无序的情景下,不是重复就是遗漏,这样在比较中,不重复、不遗漏、有序地找出一个数的因数的方法,学生就能够很好地理解并掌握。虽然在这个环节上花了比较多的时间,但对学生自主探索、自主学习起到了很好的促进作用。

  这节课另一个给我感触最深的是:就是在引导学生归纳总结出一个数的因数的特点时,由于及时跟上个性化的语言评价,激活了学生的情感,学生的思维不断活跃起来。借助这一学习热情让学生自我探索找一个数的倍数的方法。教师相信学生,学生学习兴趣更浓。不仅仅探讨出从小到大找一个数的倍数并且发现了倍数的特点。这一环节教学的成功,也使我改变了教学的观念——适时放手,会看到学生更精彩的一面。以后教学需大胆相信学生,深入钻研教材,既备教材又了解学情,作到收放自如,充分发挥学生的潜能。

  由于本节课的容量比较大,练习题设计综合性比较强,学生学得并不简便,还存在一小部分学生没有很好地理解因数与倍数的关系。今后,应努力改善教学**,提高学困生的学习效率。


倍数和因数评课稿10篇(扩展6)

——《倍数和因数》教学反思5篇

《倍数和因数》教学反思1

  《倍数和因数》这一内容与原来教材比有了很大的不同,老教材中是先建立整除的概念,再在此基础上认识因数倍数,而现在是在未认识整除的情况下直接认识倍数和因数的。数学中的“起始概念”一般比较难教,这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,具体做到了以下几点:

  (一)操作实践,举例内化,认识倍数和因数

  我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义.使学生初步建立了“因数与倍数”的概念。这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。

  (二)自主探究,意义建构,找倍数和因数

  整个教学过程中力求体现学生是学习的主体,教师只是教学活动的**者、指导者、参与者。整节课中,教师始终为学生创造宽松的学习氛围,让学生自主探索,学习理解倍数和因数的意义,探索并掌握找一个数的倍数和因数的方法,引导学生在充分的动口、动手、动脑中自主获取知识。新课程提出了合作学习的学习方式,教学中的多次合作不仅能让学生在合作中发表意见,参与讨论,获得知识,发现特征,而且还很好地培养了学生的合作学习能力,初步形成合作与竞争的意识。找一个数因数的方法是本节课的难点,在教学过程中让学生自主探索,在随后的巡视中发现有很多的学生完成的不是很好,我就决定先交流在让学生寻找,这样就用了很多时间,最后就没有很多的时间去练习,我认为虽然时间用的过多,但我认为学生探索的比较充分,学生也有收获。如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己**找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时老师再给予有效的指导和总结。

  (三)变式拓展,实践应用———促进智能内化

  练习的设计不仅紧紧围绕教学重点,而且注意到了练习的层次性,趣味性。在游戏中,师生互动,激活了学生的情感,学生的思维不断活跃起来,学生不仅参与率高,而且还较好地巩固了新知。课上,我能注重自始至终关注学生学习兴趣、学习热情、学习自信等情感因素的培养,并及时让学生感受到学***的喜悦,享受数学,感悟文化魅力。由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动地接受。教学之前我知道这节课时间会很紧,所以在备课的时候,我认真钻研了教材,仔细分析了教案,看哪些地方时间安排的可以少一些,所以我在第一部分认识因数和倍数这一环节里缩短出示时间,直接出示,实际效果我认为是比较理想的。课上还应该及时运用多**将学生找的因数呈现出来,引导学生归纳总结自己的发现:最小的因数是1,最大的因数是它本身。教师应该及时跟上个性化的语言评价,激活学生的情感,将学生的思维不断活跃起来。

《倍数和因数》教学反思2

  《倍数和因数》是我们工作室四月份研究的一个课例,我们是先抽签上二十分钟的课堂教学,再进行研讨,我们研究了每一部分的处理方法,同时,为了让我们的课堂更加连贯、自然,我们也研究了例题之间的过渡环节,尝试找到更加恰当的处理方法。那次研究之后我们工作室的每一位成员都根据自己的想法修改了教案。前几天我们工作室又在活动中**这节课,这次上课的是我,由于事先准备的不够充分课堂中发现了很多的问题,有上次研讨过还需要改进的问题,也有这次上课出现的新问题。课后工作室的成员给了我很多的很好的建议,我根据好的建议修改了我的教学设计,下面我来具体的说一说。

  1、情境导入。本节课的内容是《倍数和因数》为了让学生更清楚地感受倍数和因数的依存关系,我课上用了大头儿子和小头爸爸的例子,也用了我是老师,他们是学生的例子。但这两个例子对于本课的教学或许没有太多的意义,好像不能让学生明确感受出倍数的因数的依存关系,所以我们可以把这一部分的内容去掉,直接进入课堂,让学生进行操作活动。

  2、倍数和因数的意义。本课是想通过用12个完全相同的正方形拼成长方形的活动来让学生在活动中初步感知倍数和因数的关系,再用具体的例子向学生说明倍数和因数的含义。在课堂中我直接让学生进行操作,两人小组活动,试着摆一摆,看看有没有不同的摆法,在交流的时候让学生说说自己的摆法,每排摆了几个,摆了几排,怎样用乘法算式表示,再让学生有序地说一说,为后面找一个数的因数做好铺垫。再有一道具体的算式举例说明倍数和因数的含义,用我们过去学习的乘法算式中的乘数乘乘数等于积过渡到倍数和因数,再让学生说一说其他两道乘法算式。说完后再给学生一个提醒,并让学生再根据出示的算式说一说谁是谁的倍数和谁是谁的因数,最后的时候让学生自己写一个算式,并说一说。

  3、找一个数的倍数。这应该时本节课的重难点内容,在教学中一定要让学生说一说找倍数的方法,而我在上课的时候把这一个重要的部分一带而过,可以看出来很大一部分学生是没有掌握找倍数的方法的。所以我在思考这一难点该如何突破?是不是应让学生先**想一想办法,多说一说,给学生足够多的时间让学生去说自己用来找倍数的方法,这样多种方法出来以后,我们可以对方法进行优化,选择快速简单的找法。在教学的时候,同时注培养学生有序写出倍数,注意倍数书写的格式等意识,可以比较有序的找和无序的找,让学生自己感受有序的好处,学生有了有序地找的基本方法后,在进行练习的时候也会选择刚才优化过的好的方法进行练习。

  4、找倍数的特征。在完成找一个数的倍数之后,我们可以直接出示3,2,5的倍数是哪些,让学生观察三个倍数,再说一说自己的发现,放手让学生去找或许学生能够很快的找出来,但如果给好具体的问题,可能会限制一些学生的思考。如果学生在观察时没有发现我们所想要总结的特征,可以对学生进行适当的提示,让学生观察一个数最小的倍数,最大的倍数和倍数的个数等。先给学生足够的时间让学生自己去找,我们要相信他们藕能力做到。

  5、课堂常规的'问题。在上课之前我应先确定好小组的具体分配,以免学生在小组活动中找不到合作的对象,如果上课之前具体的分好了,小组讨论的效率会高很多。在上课时,我要少说,把更多说的机会留给学生,让学生去表达自己的想法,同时还要相信学生,不要怕学生不会,而给出很多的条条框框,限制了学生的思维发展。

《倍数和因数》教学反思3

  《公倍数和公因数》在新教材中改动很大,新教材将数的整除中有关分解质因数、互质数、用短除法求几个数的最大公因数和最小公倍数的教学内容精简掉了,新教材突出了让学生在现实情境中探究认识公倍数和最小公倍数,公因数和最大公因数,突出了运用数学概念,让学生探索找两个数的最小公倍数、最大公因数的方法,注重让学生在解决问题的过程中,主动探索简洁的方法,进行有条理的思考,加强了数学与现实生活的联系。教学以后与以前的教材相比,主要的体会有以下几点。

  一是在现实的情境中教学概念,让学生通过操作领会公倍数、公因数的含义。例1教学公倍数和最小公倍数,例3教学公因数和最大公因数,都是形成新的数学概念,都让学生在操作活动中领会概念的含义。学生通过操作活动,感受公倍数和公因数的实际背景,缩短了抽象概念与学生已有知识经验之间的距离,有利于学生运用公倍数、最小公倍数、公因数和最大公因数的知识解决实际问题。

  二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。在教学中,让学生按要求自主操作,发现用怎样的长方形可以正好铺满一个正方形;用边长几厘米的正方形可以正好铺满一个长方形。在对所发现的不同的结果的过程中,引导学生联系除法算式进行思考,对直观操作活动进行初步的抽象。再把初步发现的结论进行类推,在此基础上,引导学生思考正方形的边长与长方形的长和宽有什么关系,再揭示公倍数和公因数,最小公倍数与最大公因数的概念,突出概念的内涵是“既是……又是……”即“公有”。并在此基础上,借助直观的集合等图式,显示公倍数与公因数的意义。让学生经历了概念的形成过程。

  三是删掉了一些与学生实际联系不够紧密、对后继学习没有影响的内容后,确实减轻了学生的负担,但是找两个数的最小公倍数和最大公因数时由于采用了列举法,学生得花较多的时间去找,当碰到的两个数都比较大时,不仅花时多,而且还容易出现遗漏或算错的情况。相比之下,用短除法来求两个数的最小公倍数和最大公因数就不会出现这方面的问题,所以我在实际教学中,先根据概念采用一一列举的方法求两个数的最小公倍数和最大公因数,待学生熟悉之后就教学生运用短除法求两个数的最小公倍数和最大公因数,这样的安排效果不错,学生也没感到增加了负担。

《倍数和因数》教学反思4

  一、教材与知识点的对比与区别。

  1、对比新版教材知识设置与传统教材的区别。

  有关数论的这部分知识是传统教学内容,但教材在传承以往优秀做法的同时也进行了较大幅度的改动。无论是从宏观方面——内容的划分,还是从微观方面——具体内容的设计上都独具匠心。“因数与倍数”的认识与原教材有以下两方面的区别:

  (1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。

  (2)“约数”一词被“因数”所取代。

  这样的变化原因何在?教师必须要认真研读教材,深入了解编者意图,才能够正确、灵活驾驭教材。因此,我通过学习教参了解到以下信息:

  学生的原有知识基础是在已经能够区分整除与余数除法,对整除的含义有比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本教材中删去了“整除”的数学化定义。

  2、相似概念的对比。

  (1)彼“因数”非此“因数”。

  在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对于“积”而言的,与“乘数”同义,可以是小数。而后者是相对于“倍数”而言的,与以前所说的“约数”同义,说“X是X的因数”时,两者都只能是整数。

  (2)“倍数”与“倍”的区别。

  “倍”的概念比“倍数”要广。我们可以说“1.5是0.3的5倍”,但不能说”1.5是0.3的倍数”。我们在求一个数的倍数时,运用的方法与“求一个数的几倍是多少”是相同的,只是这里的“几倍”都是指整数倍。

  二、教法的运用实践

  1、“因数与倍数”概念的数的应用范围的规定直接运用讲述法。对与本知识点的概念是人为规定的一个范围,因此,对于学生和第一接触的印象是没有什么可以探究和探索的要求,而且给学生一个直观的感受。“因数与倍数”的运用范围就是在非0自然数的范畴之内,与小数无关,与分数无关,与负数无关(虽没学,但有小部分学生了解)。同时强调——非0——因为0乘任何数得0,0除以任何数得0。研究它的因数与倍数是没有意义。我得到的经验就是对于数学当中规定性的概念用直接讲述法,让学生清晰明确。因此,用直接导入法,先复习自然数的概念,再写出乘法算式3*4=12,说明在这个算式中,3和4是12的因数,12是3和4的倍数。

  2、在进行延续性教学中,可以让学生探究怎么样找一个数的因数和倍数,在板书要讲究一个格式与对称性,这样在对学生发现倍数与因数个数的有限与无限的对比,再就是发现一个数的因数的最小因数是1,最大因数是它本身。一个数的倍数的最小的倍数是它本身,而没有最大的倍数。这些都是上课时应该要注意的细节,这对于学生良好的学习惯的培养也是很重要的。

《倍数和因数》教学反思5

  去年教学《公倍数和公因数》这一单元时,依照学生预习、阅读课本进行教学,老师没有作过多的讲解,从学生的练习反馈中,部分学生求两个数的最大公因数和最小公倍数错误百出,反思教学后,觉得用课本上列举的方法,真的很难一下子准确找到最大公因数或最小公倍数。如:8和10的最小公倍数,有学生写80,25和50的最大公因数有学生写5。……**询问学生找两个数公倍数和最小公倍数,或者两个数的公因数和最大公因数的感受,他们都说“太麻烦了”。

  今年教学《公倍数和公因数》这一单元时,我在去年教学《公倍数和公因数》的基础上作了一些改进:

  一、仍然是将预习前置。

  二、动手操作,想象延伸。

  让学生动手操作,提高感知效果,帮助学生形成丰富的表象,是促进形象思维发展的有利途径。例题教学中让学生动手铺,铺后想,想后算,算后思。

  用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米、8厘米的正方形,能铺满哪个正方形?拿出手中的图形,动手拼一拼。

  学生分组操作,用除法算式把不同的摆法写出来。

  **:通过刚才的活动,你们发现了什么?

  以直观的操作活动,在具体的问题情境中体会公倍数和公因数与生活的联系,让学生经历公倍数和公因数概念的形成过程,加深对抽象概念的理解。

  思考:根据刚才铺正方形的过程,在头脑里想一想,用3厘米、宽2厘米的长方形纸片正好铺满边长多少厘米的正方形?在小组里交流。

  三、在教学中严格要求学生先用“列举法”教学“求两数公倍数与公因数”;在学生相对较熟练的时候尝试让学生直接说出公倍数与公因数;在此基础上适当介绍后面的阅读知识,但不要求学生使用。

  四、在教学了用“列举法”“求两数公倍数与公因数”的知识之后,适当提高训练难度,将求“最小公倍数”与“最大公因数”合并训练。通过联系“最大公因数”、“最小公倍数”的知识,引导学生发现求两个数的最小公倍数和最大公因数的扩倍法等其它的方法。要求学生根据情况,用自己喜欢的方法来求两个数的最小公倍数和最大公因数。这样,给学生结合题目中两个数的特点,自主选择方法的空间,学生比较喜欢,掌握较好。通过练习引导学生感悟、概括出了一些特殊情况:(1)两个数是倍数关系的,这两个数的最小公倍数是其中较大的一个数,最大公因数是其中较小的一个数;(2)三种最大公因数是1,最小公倍数是两数乘积的情况(“互质数”这个概念学生没有学到):①两个不同的素数;②两个连续的自然数;③1和任何自然数。

  课后反思:

  一、预习后的课堂教学,还要教,直接放手要出问题。

  二、介绍一下短除法是有必要的。但不能直接按传统的教学思路以短除法求最大公因数和最小公倍数简单代替列举法。

  三、应逐步鼓励学生把求最大公因数和最小公倍数过程想在脑中,直接说出结果。引导感兴趣的同学在课后探索其它的求最大公因数和最小公倍数的内容,适当提高学生的思维水平。


倍数和因数评课稿10篇(扩展7)

——因数和倍数教学反思菁选

因数和倍数教学反思

  身为一名刚到岗的教师,我们都希望有一流的课堂教学能力,写教学反思可以快速提升我们的教学能力,教学反思要怎么写呢?下面是小编收集整理的因数和倍数教学反思,仅供参考,欢迎大家阅读。

因数和倍数教学反思1

  这是自入职以来第一堂得到李老师指点的课。感觉得到李老师课堂上对学生信任。也让我更深一步的体会到,只有学生自己找出来的规律,特点,才能理解的更透彻,掌握的更牢固,应用起来更有效率。平日里,没有给学生充分的时间,很多规律甚至是老师直接告诉学生的,虽然课堂教学的速度有了,但是效率并不高,后期教师要花费的时间更多。那才是真正的丢了西瓜捡芝麻!

  下面从几点来分析本节课

  一、优点

  课堂掌控力不错,教师的个人素质也不错。

  二、不足

  1、 是除不尽的。但是课堂上,我却当做了能除尽的。思考出现这个错误的原因,是自己对课堂、对学生的预设不足!

  2、26是13和2的倍数,13和2是26的因数------大家发现没有,大的是倍数,小的是因数!

  我非常清楚,倍数、因数是有依存关系的,而不能单独说,但是课堂上却说出了“大的是倍数,小的是因数”这样一句有问题的话。失败!

  归结原因,还是课堂太想投机取巧。作为一个引导学生入门的老师,在知识的门口,真的不能有丝毫差池,更不能为了一时的省事,而为后面的教学买下祸根!

  三、除了错误,还有很多做的复杂、不到位的地方。

  1、开篇之时,复习自然数,是为本节课作知识铺垫用的,但是,问题中的“自然数有什么特点?”却是一个设计失败的'问题。已经学到高等数学的我,自然之道,自然数的特点到底有多庞杂!根本不是一两句话说的清的,但是我却问了这样一个问题。

  2、给定12张卡片列除法算式求商时,可以限定时间30秒,看说写的又多又准确。也就是说能全员参与的,就单独。让学生在数学作业纸上写完后,可以抓条,然后教师可以挑选着在摘录一些。这样准备充分,也可以为后面的分类打下坚实的基础。

  3、找个一个数的因数时,要先找,在订正,最后让学生说说做法。而后更正练习,接着判断,说方法。只有清楚的说出了方法,才能保证学生是真懂了。在这个过程中,还可以鼓励学生总结一些自己的做法,比如用乘法找因数,乘到几就不乘了。用除法也是,除到几就不除了!(这个数的中间位置)

  4、本节课最好的量是到会找一个数的因数就可以了,接着归纳一个数因数的特点部分就拖堂了。内容不能很好的在一堂课中充分的展现!

  一堂课教会了我很多,尤其是在教学方法上,李老师后来的引导,让我清楚的看到了学生的聪明,学生的观察力!要相信学生------首先要给学生时间去观察,去思考,去发现!否则,学生的思维永远得不到真正的发展!能力无法得到充分的提升。

因数和倍数教学反思2

  《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。在以往的教材中,都是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基础上再引出因数和倍数的概念。而现在的人教版教材中没有用数学语言给“整除”下定义,而是利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的概念。我觉得这局部内容同学初次接触,对于同学来说是比较难掌握的内容。尤其对因数和倍数和是一对相互依存的概念,不能单独存在,不是很好理解。我通过捕获生活与数学之间的联系,协助同学理解因数倍数相互依存的关系。所以在上课之前我特意和小朋友们玩了一个小游戏。用“ 我和谁是好朋友”这句话来理解相互依存的意思。即“我是谁的好朋友”,“谁是我的好朋友”,而不能说“我是好朋友”。同学对相互依存理解了,在描述因数和倍数的概念时就不会说错了。对于这节课的教学,我特别注意下面几个细节来协助同学理解因数和倍数的概念。

  一是教材虽然不是从过去的整除定义动身,而是通过一个乘法算式来引出因数和倍数的概念,但实质**是以“整除”为基础。所以我上课时特别注意让同学明白什么情况下才干讨论因数和倍数的概念。我举了一些反例加以说明。二是要同学注意区分乘法算式中的“因数”和本单元中的'“因数”的联系和区别。在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对于“积”而言的,与“乘数”同义,可以是小数,而后者是相对于“倍数”而言的,两者都只能是整数。三是要注意区分“倍数”与前面学过的“倍”的联系与区别。“倍”的概念比“倍数”要广。可以说“15是3的5倍”,也可以说“1。5是0。3的5倍”,但我们只能说“15是3的倍数”,却不能说“1。5是0。3的倍数”。我在课堂上反复强调,协助小朋友们认真理解辨析,所以同学一节课下来对这组概念就理解透彻了,不会模糊了。

因数和倍数教学反思3

  一、“倍数和因数”与“倍数和约数”这两种说法一定要分清。

  “倍数和因数”与“倍数和约数”这两种说法只是新旧教材的说法不同而已,其实都是表示同一类数。(即因数也是约数)

  二、为什么第十教科书上讲“倍数与因数”的时候不提整除。

  也许我的头脑还受旧版教材的影响,我认为说到“倍数与因数”必须要谈到整除,因为整除是研究“因数和倍数”的条件,学生在没有这条件学习整除,只要教师的教学方法稍有不慎,学生会很快误入小数也有因数;但是我在实际的教学过程中,也体会到了教材中不提整除的好处。而我的心里却又产生了一个新的疑问,S版教材到底在什么时候于什么数学环境下才提出“整除”这个概念呢?会不会在六年级课改才出现呢?我期待着。

  三、教学2、5和3的倍数教师应注重“灵活”。

  1、 在教学2和5的倍数时,是用同一种方法找出它们倍数的,学生很容易掌握,也很快就能把2和5的倍数说出,并能准确找出各自的倍数,此时,教师应把学生的思维转到同时是2和5的倍数怎样找?接着引导学生归纳出同时是2和5的倍数的特征,因此,让学生的知识面进一步加大。

  2、教学3的倍数的特征时,教师首先让学生用2和5的倍数的.方法去找3的倍数的特征,让学生尝试这种方法是找不到3的倍数的特征,这时,教师应该引导学生对写出的3的倍数,要用另一种方法去归纳、总结3的倍数的特征,运用这一特点,教师可以有意识地写些数(有3的倍数,也有不是3的倍数,而且是较大的数)让学生进行判断,这样可使学生对3的倍数的特征进一步得到巩固;当学生熟练掌握3的倍数的特征时,教师话峰一转,你们能归纳出9的倍数的特征吗?学生在教师这一激发下,他们的求知欲兴趣大增,然后教师启学生运用找3的倍数的方法,去找9的倍数的特征,学生会轻而易举地归纳、总结出9的倍数的特征。通过找9的倍数的特征,既巩固了学生学习3的倍数的特征,还使学生的知识面扩大,达到知识的巩固和迁移的目的。

  3、当学生掌握了2、5和3的倍数的特征时,教师这时应引导学生进一步归纳、总结,把这三个特征综合,从而得出同时是2、3和5的倍数的特征。

  通过这样的教学,让学生真正感受到“灵活”两字,并且能把知识面向纵横方向发展。

因数和倍数教学反思4

  教学《倍数与因数》,这是一个非常枯燥的课题,但我巧妙地运用课文中的情景图与学生的生活实际联系,通过水果店各种水果的单价所显示的数进行分类,得出自然数、整数、小数、分数和负数,使学生体会生活中各种不同的数。为了让学生理解倍数与因数的含意,教学过程中,我立足体现一个“实”字,让学生从算式中找出能整除的算式,揭示整除、倍数、因数之间的关系,再通过举例去验证倍数与因数之间的联系,在推理中“悟”出知识的规律。学生在学习中实实在在经历了一个探究的过程。“动脑筋出教室”这一游戏的`设计,学生在积极参与探讨、质疑、创造的教学活动,既巩固了知识,又享受了数学思维的快乐。

  在授课时,我体验到了学生的快乐。当学生用自己的学号说整除、因数、倍数之间的关系时,由于像顺口溜,很有趣。每个学生都很感兴趣,说得很努力。原来,数学也很有趣……

因数和倍数教学反思5

  《因数和倍数》是一节概念课。教学时我首先以拼图比赛为素材,让学生动手操作快速把12个小正方形摆出一个长方形,再让学生用乘法算式表示出所摆的长方形,在交流中得到三种不同的摆法和三种不同的乘法算式。借助乘法算式引出因数和倍数的意义,使学生初步建立了“因数与倍数”的概念。 这样,用学生已有的数学知识引出了新知识,减缓了难度,这一环节的教学,我觉得还是收到了预设的效果。

  能不重复、不遗漏、有序地找出一个数的因数,是本课的教学难点。在教学中,我是这样设计的:在根据1×12=12,2×6=12,3×4=12三个乘法算式说出了谁是谁的因数、谁是谁的倍数后,我紧接着**:12的因数有哪些?学生看着黑板上的算式很快地找出12的因数,接着再**:你是用什么方式找到12的因数的?在学生说出方法后,为了让学生探索出找一个因数的方法,我让学生自己找一找15的因数有哪些。预设在汇报时,能借此解决如何有序、不重复、不遗漏地找出一个数的因数。但在实际交流时,学生的方法出现了两种意见,并且各抒己见,因为15的因数只有两对,无论怎样找都不会遗漏。作为老师,我这时没有把我的意见强加给学生,而是以男女生比赛的形式,让学生分别找16、18的所有因数。由于部分学生运用从小到大一对一对地找很快找出这两个数的因数,另一部分却在无序的情况下,不是重复就是遗漏,这样在比较中,不重复、不遗漏、有序地找出一个数的因数的`方法,学生就能够很好地接受并掌握。虽然在这个环节上花了比较多的时间,但对学生自主探索、自主学习起到了很好的促进作用。

  最后引导学生归纳总结出一个数的因数的特点时,由于及时跟上个性化的语言评价,激活了学生的情感,学生的思维不断活跃起来。借助这一学习热情让学生自己探索找一个数的倍数的方法,学生学习兴趣更浓。不仅探讨出从小到大找一个数的倍数而且发现了倍数的特点。

  由于本节课的容量比较大,练习题设计综合性比较强,学生学得并不轻松,还存在一小部分学生没有很好地理解因数与倍数的关系。今后,应努力改进教学**,提高学困生的学习效率。

因数和倍数教学反思6

  教学内容:青岛版教材小学数学五年级上册88—91页。

  教学目标:

  1、使学生初步认识因数和倍数的含义,探索求一个数的因数或倍数的方法,发现一个数的因数、倍数中最大的数、最小的数及其个数方面的特征。

  2、使学生在认识因数和倍数以及探索一个数的因数或倍数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平,对数学产生好奇心,培养学习兴趣。

  教学重点:理解因数和倍数的意义,探索求一个数因数或倍数的方法。

  教学难点:探索求一个数因数或倍数的方法。

  教具准备:多**课件、学生练习题

  教学过程:

  一、谈话导入。

  师:同学们看这是什么?

  生:小正方形。

  师:想不想知道王老师给大家带来了多少个这样的小正方形?

  生:想。

  师:多少个?

  生:12个。

  师:想一想你能不能把这12个完全一样的小正方形拼成一个长方形呢?

  生:能。

  【设计意图】:以学生熟悉情景引入,激发学生的好奇心。

  二、教学因数和倍数的意义

  师:增加一点难度,用一道算式说明你的想法,让其他同学猜一猜你是怎么摆的,好吗?

  生:好!

  学生汇报:

  生1:1×12=12

  师:他是怎么摆的?

  生:一行摆1个,摆了12行;也可以一行摆12个,摆1行。

  课件出示摆法。

  师:把第一种摆法竖起来就和第二种摆法一样了,我们把这两种摆法算作一种摆法。(用课件舍去一种)

  生2:2×6=12

  师:猜一猜他是在怎么摆的?

  生:一行摆2个,摆了6行;也可以一行摆6个,摆2行。

  师:这两种情况,我们也算一种。

  生3: 3×4=12

  师:他又是怎么摆的?

  生:一行摆3个,摆了4行;也可以一行摆4个,摆3行。

  师:还有其他摆法吗?

  生:没有了。

  师:对,如果把12个同样大小的正方形拼成一个长方形,就只有这三种摆法,大家千万不要小看了这三种摆法,更不要小看了这三种摆法下面的三道乘法算式,今天我们的新课就藏在这三道乘法算式里面。因数和倍数(板书课题)

  2.教学“因数和倍数”的意义。

  师:我们以3×4=12为例,在数学上可以说3是12的因数,4也是12的因数,12是3的倍数,12也是4 的倍数。这里还有两道算式,同桌两个同学先互相说一说谁是谁的因数,谁是谁的倍数。

  学生汇报:任选一道回答。

  生1:12是12的因数,1是12的因数,12是2的倍数,12是1的倍数。

  师:说的多好啊!虽然有点像绕口令,但数学上确实是这样的。我们再一起说一遍。

  师:还有一道算式,谁来说一说?

  生:2是12的因数,6是12的因数,12是2的倍数,12也是6的倍数。

  师明确:为了研究方便,我们所说的因数和倍数都是指自然数,(0除外)。

  师:通过刚才的练习,你有没有发现12的因数一共有哪些? (生边说老师边有序的用课件出示12的所有的因数。)

  师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。

  3、5、18、20、36

  【设计意图】让学生经历知识的形成过程。通过实际例子,让学生进一步理解,因数和倍数之间存在着相互依存的关系。

  三、教学寻找因数的方法。

  1、找一个数的因数。

  师:看来同学们对于因数和倍数已经掌握的不错了。不过刚才老师在听的时候发现一个奥秘,好几个数都是36的因数,你发现了吗?谁能在五个数中把哪些数是36的因数一口气说完?

  师:说出几个36的因数并不难,关键是怎样找的既有序又全面,有没有信心挑战一下?

  生:有。

  师:老师提个要求:

  1)、可以**完成,也可以同桌交流。

  2)、把这个数的因数找全以后,把你的方法记录在下面。并总结你是怎样找的。

  2、探索交流找一个数的因数的方法。

  找一名有**性的作业板书在黑板上。

  师:他找对了吗?

  生:没有,漏下了一对。

  师:为什么会漏掉?仅仅是因为粗心吗?

  生:不是,他没有按照一定的顺序找!

  师:那么要找到36所有的因数关键是什么?

  生:有序。

  师生共同边说边有序的把36的所有的因数板书出来。 师:还有问题吗?

  生:没有了。

  生:你们没有,老师有一个问题,你们为什么找到6就不再接着往下找了?

  生:再接着找就重复了。

  师:那么找到什么时候就不找了?

  生:找到重复了,就不在往下找了。

  师、生共同总结找因数的方法。(一对一对有序的找,一直找到重复为止)。

  师:有失误的学生对自己的错误进行调整。

  3、巩固练习。

  找出下面各数的因数。

  4、寻找一个数的因数的特点。

  【设计意图】放手让学生自主找一个数的因数,并总结找一个数因数的方法。学生非常喜欢,而且也能够让学生在活动中提升。

  四、教学寻找倍数的方法。

  1、找一个数的倍数。

  师:刚才我们学习了找一个数的因数,那么你能像刚才一样有序的找出一个数的所有倍数吗?

  生:能!

  师:试试看,找个小的可以吗?

  生:行!

  师:找一下3的倍数。30秒时间,把答案写在练习纸上。 ??

  师:有什么问题吗?

  生:老师,写不完。

  师:为什么写不完?

  生:有很多个!

  师:那怎么才能全都表示出来呢?

  生:可以加省略号。

  师:你太厉害了!你把语文上的知识都用**,太真聪明了!难道不该再来点掌声吗?

  师:谁能总结一下你是怎样找到的?

  生:从小到大依次乘自然数。

  师:你真会思考!

  课件出示3的倍数。

  2、找5、7的倍数。

  师:我们再来练习找一下5的倍数。

  生:5的倍数有:5、10、15、20、25??

  生:7的倍数有:7、14、21、28、35??

  师:你能像总结一个数因数的特点一样,来总结一下一个数的倍数有什么特征吗?

  生:能!

  学生总结:一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

  【设计意图】在探索求一个数的倍数和因数的.方法时,创设具体的情境让学生去合作交流,并结合具体事例,让学生自己观察并发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征,丰富了教学方式,让学生在观察中发现,在合作中体验成功的喜悦,在主动参与、乐于探究中发展自我。

  四、知识拓展

  认识“完美数”。

  师:(课件出示6的因数)在6的因数中还藏着另外一个秘密,(这是孩子们都瞪大眼睛在看,在听!)我们把6的因数中最大的一个去掉,剩下1、2、3,然后把它们再加起来又回到6本身,数学家给这样的数起了一个名字,叫“完美数”。依次出示第二个、第三个一直到第六个完美数。

  小结:其实有关因数和倍数的秘密还有很多,它们在等待着同学们在以后的学习中去研究、去探索。

  【设计意图】丰富学生的知识,陶冶学生的情操。

  教学反思:

  找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里充分发挥小组学习的优势。先让学生自己**找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时如果再给予有效的指导和总结就更好了。

因数和倍数教学反思7

  《因数和倍数》这一教学内容是一节概念课。教材在引入因数和倍数的概念时是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。数学中的“起始概念”一般比较难教,我创设有效的数学学习情境,数形结合,变抽象为直观。利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的概念。这样,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义。使学生初步建立了“因数与倍数”的概念。这样,用学生已有的数学知识引出了新知识,减缓了难度,这一环节的教学,我觉得还是收到了预设的效果。

  能不重复、不遗漏、有序地找出一个数的因数,是本课的教学难点。在教学中,我是这样设计的:在根据1×12=12,2×6=12,3×4=12三个乘法算式说出了谁是谁的因数、谁是谁的倍数后,教师紧接着**:12的因数有哪些?学生看着黑板上的算式很快地找出12的因数,接着再**:你是用什么方式找到12的因数的?在学生说出方法后,为了让学生探索出找一个因数的方法,我让学生自己找一找15的因数有哪些。预设在汇报时,能借此解决如何有序、不重复、不遗漏地找出一个数的因数。但在实际交流时,学生的方法出现了两种意见,并且各抒己见,因为15的`因数只有两对,无论怎样找都不会遗漏。作为老师,我这时没有把我的意见强加给学生,而是以男女生比赛的形式,让学生分别找16、18的所有因数。由于部分学生运用从小到大一对一对地找很快找出这两个数的因数,另一部分却在无序的情况下,不是重复就是遗漏,这样在比较中,不重复、不遗漏、有序地找出一个数的因数的方法,学生就能够很好地接受并掌握。同时在练习中我设计了其中一道题是猜我的电话号码,激发起学生的兴趣,我是这样想的:重在培养学生善于联想,勇于探索的习惯。由个体现象联想到同类现象并能深入探索,这是创造的源泉。虽然在这个环节上花了比较多的时间,但对学生自主探索、自主学习起到了很好的促进作用。

  这节课另一个给我感触最深的是:就是在引导学生归纳总结出一个数的因数的特点时,由于及时跟上个性化的语言评价,激活了学生的情感,学生的思维不断活跃起来。借助这一学习热情让学生自己探索找一个数的倍数的方法。教师相信学生,学生学习兴趣更浓。不仅探讨出从小到大找一个数的倍数而且发现了倍数的特点。这一环节教学的成功,也使我改变了教学的观念——适时放手,会看到学生更精彩的一面。以后教学需大胆相信学生,深入钻研教材,既备教材又了解学情,作到收放自如,充分发挥学生的潜能。

  由于本节课的容量比较大,练习题设计综合性比较强,学生学得并不轻松,还存在一小部分学生没有很好地理解因数与倍数的关系。今后,应努力改进教学**,提高学困生的学习效率。

因数和倍数教学反思8

  今天和孩子们一起学习了新的一节课《因数》,对于《因数》来说是孩子们第一册接触的知识,但是对于因数这个词来说,孩子们也并不陌生,因为在乘法算式中已经有了因数的一个初步的了解。所以对于本节课来说自己有如下的感受:

  一、初步感知,数形结合让学生形成表象

  在教学的时候,我首先通过课本上飞机图的情景图让学生看图列算式,并且用现在自己五年级的思维来用不同的乘法算式来表示,这一环节对于学生列式来说是比较简单的,基本上所有的学生都能够很好的列出算是,然后根据学生列出的算式,引出因数和倍数的意义。在此环节的设计上由于方法的多样性,为不同思维的展现提供了空间,激发了学生的形象思维,而又借助 “形”与“数”的关系,为接下来研究“因数与倍数”概念打下了良好基础,有效地实现了已有知识与新知识之间的联系。更好的分化了难点,让学生很轻松的接受了知识的形成。

  二、自主探究以邻为师

  在学生知道了因数和倍数的意义上,接下来出示了让学生自己动手找18的所有的因数。为了能够更好的、全面的找到18的所有因数,让同桌两人互相合作来完成。通过教学发现学生的合作能力很强,能够用数学语言来准确的表述,而且大多数学生在合作的.过程中也能很好的找到、找全18的.所有的因数。

  三、在练习中体验学习的快乐

  在 最后的环节中我设计了不同层次的练习,先让学生说说有关因数和倍数的意义的一些练习题,加深对知识点的理解,主要是让学生明白因数和倍数不是单独存在的, 是相互已存的,必须要说清楚是谁是谁的因数、谁是谁的倍数。通过教学来看学生掌握的还算可以。接着出示了让学生找不同数的因数,在这个环节的设计用了不同 的形式,比如:找朋友,你来说我来做,比一比说最快等形式来帮助学生理解知识,在此过程中学生很感兴趣,激情很好课堂气氛热烈,也让学生在轻松的氛围中体 验到学习的快乐。

  不足之处:

  在本节课的教学上还是存在很多不足之处,虽然自己也知道新课标提出要以学生为主体,老师只是引导着和合作者,可是在教学过程中许多地方还是不由自主的说得过多,给学生的自主探索空间太少。

  如在教学找18的因数这一环节时,由于担心孩子们是第一次接触因数,对于因数的概念不够了解,而犯这样或那样的错误,所以引导的过多讲解的过细,因此给他们自主探究的空间太小了,没能很好的体现学生的主体性。

因数和倍数教学反思9

  《倍数和因数》这一节的主要内容是让学生在已有知识和经验的基础上,自主探索和总结找一个数的倍数和因数的方法;用“列举法”研究一个数的倍数的特点和一个数的因数的特点。 这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。 这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,具体做到了以下几点:

  (一) 操作实践,举例内化,认识倍数和因数

  我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义.使学生初步建立了“因数与倍数”的概念,使数与形做到了有机的结合。 这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,降低了难度,效果较好。

  (二)自主探究,意义建构,找倍数和因数

  一个数的倍数与因数的特征,单凭记忆也不难接受,为防止学生进行“机械学习”,我提出“任何一个不是0的自然数的因数有什么特点,”让学生观察12,20,16,36的因数,思考:一个数的因数的个数是有限的还是无限的?其中最大的因数是几?最小的呢?让学生的思维有了明确的指向。整个教学过程中力求体现学生是学习的主体,教师只是教学活动的**者、指导者、参与者。整节课中,教师始终为学生创造宽松的学习氛围,让学生自主探索,学习理解倍数和因数的意义,探索并掌握找一个数的倍数和因数的方法,引导学生在充分的动口、动手、动脑中自主获取知识。

  (三)抓住学生思维的“最近发展区”,让学生在“**思考——集体交流——互相讨论”的过程中,促使学生学会有序思考,从而形成基本的技能与方法,既关注了过程,又关注了结果。

  找一个数的因数的方法是本节课的难点,在教学过程中让学生自主探索,在随后的巡视中发现有很多的学生完成的不是很好,我就决定先交流再让学生寻找,这样就用了很多时间,最后就没有很多的时间去练习,我认为虽然时间用的过多,但我认为学生探索的比较充分,学生也有收获。如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己**找36的因数,我巡视了一下三分之一的学生能有序的.思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时老师再给予有效的指导和总结。

  (四)变式拓展,实践应用---—促进智能内化

  练习的设计不仅紧紧围绕教学重点,而且注意到了练习的层次性,趣味性。在游戏中,师生互动,激活了学生的情感,学生的思维不断活跃起来,学生不仅参与率高,而且还较好地巩固了新知。课上,我能注重自始至终关注学生学习兴趣、学习热情、学习自信等情感因素的培养,并及时让学生感受到学***的喜悦,享受数学,感悟文化魅力。

  (五)重视数学意义的渗透与拓展,力求用数学的本质吸引学生,树立为学生的继续学习和终身发展服务的意识。本节课的设计,我就关注了学生的学习后劲。如列举法的介绍,有序思考的解决问题的策略等。

  由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动地接受。教学之前我知道这节课时间会很紧,所以在备课的时候,我认真钻研了教材,仔细分析了教案,看哪些地方时间安排的可以少一些,所以我让学生***了预习,做好了一定的准备工作。在第一部分认识因数和倍数这一环节里缩短出示时间,直接出示,,实际效果我认为是比较理想的。课上还应该及时运用多**将学生找的因数呈现出来,引导学生归纳总结自己的发现:最小的因数是1,最大的因数是它本身。教师应该及时跟上个性化的语言评价,激活学生的情感,将学生的思维不断活跃起来。

因数和倍数教学反思10

  不知不觉,我们又进行了第二单元的学习。第二单元的内容是《因数与倍数》,这部分内容与老教材相比变化很大,我觉得第二、四单元是本册教材中变化最大的单元,要引起足够的重视。

  1、以往认识因数和倍数是借助于整除现象,“X能被X整除,或X能整除X”,所以X是X的因数,X是X的倍数。现在的教材完全不同了,2X3=6,所以2和3是6的因数,6是2和3的倍数,借助整除的模式na=b直接引出因数和倍数的概念。

  2、以往数学教材中,概念教学的量很大。数的整除,因数(老教材称为约数),倍数,2、5、3的倍数的特征(老教材称为能被2、5、3整除的数的特征),质数,倒数,分解质因数,最大公因数(以往的教材中称为最大公约数),最小公倍数等内容共同编排在后面,合为一个单元。而现在新教材本单元只安排了因数和倍数,2、5、3的倍数的特征,质数合数。其它内容安排在了第四单元《分数的.意义和性质》,借助约分引出公约数、公倍数的学习,改变了概念多而集中,抽象程度过高的现象。

  3、以往求最大公约数,最小公倍数时,采用的方法是唯一的、固定的,也就是有短除法分解质因数,而新教材中鼓励方法多样化,不把它作为正式的内容教学,而是出现在教材的你知道吗中?不那么呆板了,尊重学生的思维差异。

  可见,编者为体现新课标精神对本部分内容作了精心的调整,煞费苦心,可是学完了本单元的第一部分和第二部分内容,我对本单元的学习内容有了小小的疑问。这一单元内容分为因数和倍数,2、5、3的倍数的特征,质数和合数,我觉得第一部分内容和第三部分内容的关系很大,连续性强。知道了什么是因数和倍数,也会找一个数的因数和倍数了,那么就应该从找因数和个数问题上学习质数和合数。教材对质数和合数的学习内容设计较好,开门见山让学生找出1-20各数的因数,观察因数的个数有什么规律,再引出质数和合数的学习。可为什么在中间突然加**2、5、3的倍数的特征?这样感觉前后内容失去了联系,不够自然流畅。所以我觉得可以把二三部分内容作为适当的调整,即因数和倍数,质数和合数,2、5、3的倍数的特征会比较好一些。

因数和倍数教学反思11

  《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。在以往的教材中,都是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基础上再引出因数和倍数的概念。而现在的人教版教材中没有用数学语言给“整除”下定义,而是利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的概念.

  “数学是科学中的皇后,而数论又是数学中的皇冠”,因数和倍数这部分知识属于数论中的分支,比较抽象。我觉得这部分内容学生初次接触,对于学生来说是比较难掌握的内容。尤其对因数和倍数是一对相互依存的概念,不能单独存在,不是很好理解。因此在教学中我重视学生主体作用的发挥,注重为学生创造自主探究的时间与空间。采用质疑——探究——释疑——巩固——总结的课堂教学模式收到了较好的教学效果。对于这节课的教学,我特别注意从以下几个方面来帮助学生理解因数和倍数的概念。

  一、对比中质疑,激发学习兴趣

  学源于思,起于疑。课的开始我从“因数”这一概念入手,问学生我们在什么时候认识过“因数”,学生回忆起在乘法的各部分名称中认识了“因数”。“既然我们已经认识了因数,教材为什么又让我们认识它呢,我们这节课认识的因数和我们前面认识的因数有什么不同呢?”我的问题激发了学生的学习兴趣。于是我因势利导让学生打开书自主学习,看看有什么发现。在这一环节中我虽然没有让学生动手操作,但我很好的利用了教材这一载体,放手让学生自主学习,很好的培养了学生的自学能力。

  二、探究中释疑,培养学习能力

  教材虽然不是从过去的整除定义出发,而是通过一个乘法算式来引出因数和倍数的概念,但本质上仍是以“整除”为基础。所以我上课时特别注意让学生明白什么情况下才能讨论因数和倍数的概念。我举了一个反例加以说明.0.2×60=12,我们能说0.2和60是12的因数吗,一石激起千层浪,学生面面相觑,我趁热打铁,那就让我们再到书中去寻找答案吧。学生再次读书发现原来为了研究方便,我们所说的因数和倍数指的是整数一般不包括0。二次读书让学生对因数和倍数的研究范围有了明确。很好的帮助学生区分乘法算式中的“因数”和本单元中的“因数”的联系和区别。在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对于“积”而言的,与“乘数”同义,可以是小数,而后者是相对于“倍数”而言的,两者都只能是整数。我在课堂上反复强调,帮助孩子们认真理解辨析,所以学生一节课下来对这组概念就理解透彻了,不会模糊自主探究,合作学习。

  三、实践中发现,优化学习方法。

  在学生认识了因数与倍数的概念之后,我又放手让每个同学找出36的所有因数,学生围绕我提出的“怎样才能找全36的所有因数呢?”这个问题,去寻找36的所有因数。由于个人经验和思维的差异性,出现了不同的答案,但这些不同的答案却成为探索新知的资源,在比较不同的`答案中归纳出求一个数的因数的思考方法。既为学生留足了自主探究的空间,又在方法上有所引导,避免了学生的盲目猜测。通过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。通过观察12,36,30,18的因数和2,4,5,7的倍数,让学生自己说一说发现了什么?由于提供了丰富的观察对象,保证了观察的目的性。诱发学生探索与学习的欲望,从而激活学生的思维。让学生在许多的不同中通过合作交流找到相同。

因数和倍数教学反思12

  XXXX小学 XXXXX

  教学内容:教材例1、例2

  教学目标

  1.知识与技能:让学生初步理解因数和倍数的概念,掌握找因数和倍数的方法。学会用列举法找一个数的因数和倍数。

  2.过程与方法:借助直观图,先引导学生观察后列出乘法算式,最后结合乘法算式来理解因数与倍数的概念。

  3.情感、态度与价值观:理解因数和倍数的意义能及两者之间相互依存的关系。

  教学重点:理解因数和倍数的概念。

  教学难点:掌握求一个数的因数和倍数的方法。

  教学方法:启发式教学法、指导自主学习法。

  教学准备:多**。

  教学过程:

  一、新课导入:

  1.出示教材第5页例1。

  12÷2=6 9÷5=1.830÷6=5 2÷3=0.6

  26÷8=3.5 19÷7≈2.7120÷10=2 21÷21=163÷9=7

  (1)观察: 引导观察例1中的算式,你发现了什么?(都是除法算式)

  (2)分类:你能把上面的除法算式分类吗?

  学生分类后,教师**学生交流,引导学生根据是否整除分为以下两类

  第一类 12÷2=620÷10=2 30÷6=5 21÷21=1 63÷9=7 第二类 9÷5=1.8 19÷7≈2.71 2÷3=0.626÷8=3.25

  2.引入课题。这节课我们就来学习有关数的整除的相关知识。(板书课题:因数和倍数)

  二、探索新知:

  (一)、明确因数与倍数的意义。(教学例1)

  1. 教师引导。教师指出:在整数除法中,如果商是整数而没有余数,我们

  就说被除数是除数和商的倍数,除数和商是被除数的因数。例如:12÷2=6,我们说12是2和6的倍数,2和6是12的因数。

  2. 学生尝试。

  教师让学生说一说第一类的每个算式中,谁是谁的因数?谁是谁的倍数?先同桌互相说一说,再**全班交流。

  3. 深化认识。师:通过刚才的说一说活动,你发现了什么?

  引导学生体会:因数和倍数虽是两个不同的概念,但又是相互依存的,二者不能单独存在。我们不能说谁是因数,谁是倍数,而应该说谁是谁的因数,谁是谁的倍数。例如,30÷6=5,30是6和5的倍数,6和5是30的因数。教师强调,并让学生注意:为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括O)。

  4. 即时练习。指导学生完成教材第5页“做一做”。

  小结:如果a÷b =c(a,b,c均是不为0的自然数),那么a就是b和c的倍数,b和c是a的因数。因数和倍数是相互依存的。

  (二)、探索找一个数因数的方法。(教学例2)

  1. 出示例2:18的因数有哪几个?

  (1) 学生**思考。

  师:根据因数和倍数的意义,想一想18除以哪些整数的结果是整数。

  18÷1=18,l和18是18的因数;18÷2=9, 2和9是18的因数;18÷3=6, 3和6是18的因数。引导学生把18的因数按从小到大的顺序排列,每两个因数之间用逗号隔开,全部写完后用句号结束,即18的因数有:1,2,3,6,9 ,18。

  (2)小组合作交流。交流时教师要让学生说明找的方法,引导学生认识:只要想18除以哪些整数的结果是整数,并且要从1开始,一对一对地找,避免遗漏。如果学生还有其他想法,只要合理,教师都应给予肯定。

  (3)采用集合图的方法。

  教师指出也可用右面的集合图来表示18的全部因数。明确:用图示法表示18的因数时,先画一个椭圆,在椭圆的上面写上“18的因数”,再把18的因数按从小到大的顺序有规律地写在椭圆里,每两个因数之间也用逗号隔开,全部写完后不加句号。

  (4)练习。让学生找出30的因数和36的因数,并**交流。

  30的因数有1,2,3,5,6,10,15,30。

  36的因数有1,2,3,4,6,9,12,18,36。

  三、巩固练习

  指导学生完成教材“练**”第1、6题。学生**完成全部练习后教师**学生进行集体证正。

  四、课堂小结

  师:通过本节课的.学习,你有什么收获?

  板书设计:

  因数和倍数

  12÷2=6 12是2和6的倍数

  2和6是12的因数 18的因数有1,2,3,6,9,18。

  一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

  作业:教材第7页“练**”第2(1)题。

  第二单元:因数和倍数

  第二课时:因数与倍数(2)

  教学内容:教材P6例3及练**第2(1)、3~8题。

  教学目标:

  知识与技能:通过学习,使学生能自主探究,找出求一个数的倍数的方法。 过程与方法:结合具体情境,使学生进一步认识自然数之间存在因数和倍数的关系,掌握求一个数的因数和倍数的方法。

  情感、态度与价值观:初步学会从数学的角度提出问题、理解问题,并能用所学知识解决问题。在解决问题的过程中,培养学生概括、分析和比较的能力,使学生体会数学知识的内在联系。

  教学重点:掌握求一个数的倍数的方法。

  教学难点:理解因数和倍数两者之间的关系。

  教学方法:启发式教学法、指导自主学习法。

  教学准备:多**。

  教学过程:

  一、复习导入

  10,28,42的因数有哪些?你是用什么方法找出这些数的因数个数的?一个数的因数中,最大的是几?最小的是几?

  二、探索新

  1.探索找倍数的方法。(教学例3)

  出示例3:2的倍数有哪些?

  师:你会找2的倍数吗?给你们1分钟的时间,看谁写得又对、又快、又多!准备好了吗?开始!

  师:时间到,你写了多少个2的倍数?生1:15个。生2:24个。

  师:大家都是用的什么方法呢?

  生1:我是用乘法口诀,一二得二,二二得四……这样写下去的。

  生2:我也是用乘法,用2去乘1、乘2……

  师:哪些同学也是用乘法做的?

  师:你们都是用2去乘一个数,所得的积就是2的倍数。还有不同的方法吗?

  生3:我用的是除法,用2÷2=1,4÷2=2 6÷2=3??依次除下去。

  师:很好!如果给你更长的时间,你能把2的倍数全部写出来吗?

  师:为什么?(因为2的倍数有无数个)

  师:怎么办?(用省略号)

  师:通过交流,你有什么发现?

  引导学生初步体会2的倍数的个数是无限的。

  追问:你能用集合图表示2的倍数吗?

  学生填完后,教师**学生进行核对。

  (4)即时练习。让学生找出3的倍数和5的倍数,并**交流。学生举例时可能会产生错误,教师要引导学生根据错例进行适时剖析。

  4.反思提炼。师:从前面找因数和倍数的过程中,你有什么发现?

  先让学生在小组内交流,再**全班集体交流,通过全班交流,引导学生认识以下三点:

  (1)一个数的最小因数是1,最大因数是它本身。

  (2)一个数的最小倍数是它本身,没有最大倍数。

  (3)一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

  三、巩固提升

  1.指导学生完成教材第7~8页“练**”第4、5、6、7题。

  学生**完成全部练习后教师**学生进行集体证正。

  集体订正时,教师着重引导学生认识以下几点:

  (1)第4题“15的因数有哪些?”和“15是哪些数的倍数”答案是一样的。

  (2)第5题中的第(2)小题是错的,因为一个数的倍数的个数是无限的,第(4)小题也是错的,因为在研究因数和倍数时,我们所说的数指的是自然数,不含小数。

  (3)思考题:两数如果都是7(或9)倍数,它们的和也一定是7(或9)的倍数,即如果两数都是n的倍数,它的和也是n的倍数。

  2.利用求倍数的方法解决生活中的实际问题

  出示:妈妈买来几个西瓜,2个2个地数,正好数完,5个5个地数,也正好数完。这些西瓜最少有多少个?

  理解题意,分析解答。

  教师提示“2个2个地数,正好数完,说明西瓜的个数是2的倍数,5个5

因数和倍数教学反思13

  《倍数和因数》,由于之前没上过这册内容,在看完教材后就和同组的老师说,这个内容好像挺简单的。不过上完这节课后这个想法却烟消云散,根本没有想象的那么容易上,而且在课堂中存在了很多在预设中没有想到的问题,下面对自己的课堂做一些反思:

  1.在第一个环节认识倍数和因数的意义中,首先让学生用12个同样大小的小正方形摆成一个长方形,并用乘法算式来表示你是怎么摆的,有几种不同的摆法?通过让学生动手操作实践,体现了以学生为本,而且能唤醒学生已有的知识经验,抽象为具体讨论的数学问题。在抽象出三个不同的乘法算式后,我以第一个乘法算式4×3=12为例,介绍倍数和因数的关系,本来以为说:“4和3是12的因数,12是4和3的倍数”应该是很简单的两句话,学生应该会说,可是当请学生来自己选择一个乘法算式来说一说时,好几个学生却被卡住了,还有的说成了4是12的倍数。

  针对学生出现的问题,我觉得可能是自己在介绍时运用的不到位,一个是比较小,后面的同学都没能看清楚;另一方面我预想的比较简单,所以说了一遍后也没请学生再复述一遍。在说到“谁是谁的倍数,谁是谁的因数”时应该在中相继出示这两句话,这样的话让学生看着说印象会更深刻,相信学生说的也会比较好。

  2。第二个环节是探求找一个数的倍数的方法,从上一个环节我最后出示的除法算式中引入:我们知道了18是3的倍数,那3的倍数是不是只有18呢?通过疑问来激发学生找出3的倍数有哪些?学生很快能找到,但是并没有找全,于是再问,那又什么办法把3的倍数找全呢?学生自然想到去乘1,乘2,乘3……,也就按顺序找到了3的倍数。在分别找到了2和5的倍数后我问学生:观察上面这几个例子,你有什么发现?请了好几个学生都没能找到,最后还是老师告诉了学生倍数最小是?最大呢?

  针对最后请学生找一找发现倍数的共同特点这一问题,我觉得我在设计时问题提得太大,太笼统。学生听到问题后可能无从下手,不知道该找什么。可以问:刚才找了2,3,5的倍数,观察这几个数的倍数,他们有什么共同特点?这样学生就会比较有针对性地去寻找结果。

  3。第三个环节是探求找一个数因数的方法,找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找一个数的因数,对于刚刚对倍数因数有个感性认识的学生来说有是一定困难的,而这个环节我处理的也不到位,学生对找一个数因数的方法掌握的不够好。

  我一开始设计请学生自主找36的因数,在巡视时发现有一部分学生没有头绪,无从下手,时间倒是花去了不少。所以我觉得是否可以先从12下手,因为前面一开始已经找过12的因数了,如果这里能用12做一下铺垫,可能找36的因数时就会好一些。

  在学生自主探索完36的.因数有哪些后,交流不同学生的结果,有一位出现了1,36;2,18;3,12;4,9;6,6我就问你是怎么找到的?学生说是用除法找到的,于是就用36分别去除1,2,3……得到了36的因数。其实这里除了用除法来找之外,还可以用乘的方法来找,而乘的方法似乎对于学生来说在找得时候还更简单一点。更重要的是我觉得一对对的找对于找全一个数的因数是一个很重要的方法,而我却把这个方法忽略了,所以学生对于找一个数的因数的方法不够深刻,在练习中也发现做的不理想。

  4。第四个环节是巩固练习,我设计了2个小游戏。一个是看谁反应快,符合要求的请学生起立,这个游戏学生参与面广,学生也感兴趣,还从中发现了找谁的学号是几的因数,1每次都会起立,就更好的巩固了一个数的因数最小是1。但是也有个别学生反应比较慢。第二个小游戏是猜一猜老师的手机号码是多少?但是由于前面时间用的比较多,所以没来得及做。

  原本认为简单的课却一点都不简单,每个细小环节的把握都要求我去仔细的钻研教材,设计好每一步,这样才能上好一节课。

因数和倍数教学反思14

  教学中我发现倍数和因数这一内容与原来教材比有了很大的不同,老教材中是先建立整除的概念,在此基础上认识因数倍数。而这里的处理的方法有所不同,我在教学时做了一些改动,让学生用12个小正方形摆长方形,然后自己用算式把摆法表示出来。这样学生的算是就不局限于乘法,有一部分学生写了除法算式。这样学生很容易感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。因为现在也有很多学生学**赛,所以我从整除的角度也介绍了因数与倍数的概念.

  由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动的'接受。如让学生思考:你觉得3和12、4和12之间有什么关系呢?(对乘除法学生有着相当丰富的经验,因此不少学生能说出倍数关系,可能说得不很到位,但那是学生自己的东西)。当学生认识了倍数之后,我进行了设问:12是3的倍数,那反过来3和12是什么关系呢?尽管学生无法回答,但却给了他思考和接受“因数”的空间,使学生体会到12是3的倍数,反过来3就是12的因数,接下来4和12的关系,学生都争者要回答。

  如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己**找36的因数,我巡视了一下五分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这不比老师给予的有效得多。

因数和倍数教学反思15

  这节课带给我的感想是颇多的,但综观整堂课,我觉得要改进的地方还有很多,我只有不断地进行反思,才能不断地完善思路,最终才能有所悟,有所长。下面就说说我对本课在教学设计上的反思和一些初浅的想法。

  本单元内容在编排上与老教材有较大的差异,比如在认识“因数、倍数”时,不再运用整除的概念为基础,引出因数和倍数,而是直接从乘法算式引出因数和倍数的概念,目的是减去“整除”的数学化定义,降低学生的认知难度,虽然课本没出现“整除”一词,但本质上仍是以整除为基础。本课的教学重点是求一个数的因数,在学生已掌握了因数、倍数的概念及两者之间的关系的基础上,对学生而言,怎样求一个数的因数,难度并不算大,因此教学例题“找出18的因数”时,我先放手让学生自己找,学生在**思考的过程中,自然而然的会结合自己对因数概念的理解,找到解决问题的方法(培养学生对已有知识的运用意识),然后在交流中不难发现可用乘法或除法来求一个数的因数(列出积是18的乘法算式或列出被除数是18的除法算式)。在这个学习活动环节中,我留给了学生较充分的思维活动的空间,有了**活动的空间,才会有思维创造的火花,才能体现教育活动的终极目标。特别是用除法找因数的学生,正是因为他们意识到了因数与倍数之间的整除关系的本质,才会想到用除法来解决问题,我也不由得佩服这些孩子对知识的迁移能力。在这个环节的处理上,教材的本意是先由教师提出“想一想,几和几相乘得18?”引导学生从因数的概念,用乘法来找因数,而我考虑到本班孩子的学情(绝大多数学生能够运用所学知识,找到求因数的方法),如教师一开始就引导学生:想几和几相乘,势必会造成先入为主,妨碍学生创造性的思维活动?用已有的经验自主建构新知是提高学生学习能力的有效途径,让学生**思考、自主探索、促思(促进学生思维发展)、提能(提高学习能力)是我的教学策略主要内容。至于这两种方法孰重孰轻,的`确难以定论。实际上,对于数字较小的数(口诀表内的),用乘法来求因数还是比较容易,但是超出口诀表范围的数用除法则更能显示出它的优势,如求54的因数有哪些?学生要直接找出2和几相乘得54,3和几相乘得54,4和几相乘得54,显然加大了思维难度,如用除法不是更简单直接一些吗?学生的学习潜力是巨大的,教师是学生学习的引领者,因此教师的观念和行为决定了学生的学习方式和结果,所以我认为教师要专研教材,充分利用教材,根据学生的实际情况,创造性地使用教材,为学生能力的发展提供素材和创造条件,真正实现学生学习的主体地位。

  学生在找一个数的因数时最常犯的错误就是漏找,即找不全。学生怎样按一定顺序找全因数这也正是本课教学的难点。所以在学生交流汇报时,我结合学生所叙思维过程,相机引导并形成有条理的板书,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。这样的板书帮助学生有序的思考,形成明晰的解题思路的作用是毋庸质疑的。教师能像教材中那样一头一尾地成对板书因数,这样既不容易写漏,而且学生么随着流程的进行,势必会感受到越往下找,区间越小,需要考虑的数也就越少。当找到两个相邻的自然数时,他们自然就不会再找下去了。书写格式这一细节的教学,既避免了教师罗嗦的讲解,又有效突破了教学难点,我相信像这样润物无声的细节,无论于学生、于课堂都是有利无弊的。


倍数和因数评课稿10篇(扩展8)

——《因数和倍数》评课稿实用5篇

  《因数和倍数》评课稿 1

  这是一节概念课,关于“倍数和因数”教材中没有写出具体的数学意义,只是借助乘法算式加以说明,进而让学生探究寻找一个数的倍数和因数。

  听了老师执教的《倍数和因数》,总体感觉本节课的教学中规中矩,目标基本达成、重点突出、难点突破、教法灵活、学法指导较到位、小组活动有效,在“因数和倍数”概念的学习过程中,重视师生情感的交流,注重每个学生的发展,较好地体现了“教师有效引导下学生自主探索”这一教学策略,遗憾的是教学时间分配不够合理。

  1、意义教学引导学生自主构建

  在多次的实践教学中,发现用12个完全相同的小正方形拼出一个长方形。对于四年级的学生来说非常容易。教材这样安排的目的,在于帮助学生有意识地感受1和12、2和6、3和4这几组数之间的有机联系。

  本课中,倍数和因数的意义教学分三个层次:

  ①借助三个问题让学生通过实践操作,想像及大屏幕的直观演示,引导学生得出三道乘法算式,同时介绍倍数和因数的含义。

  ②通过除法算式找因倍关系。

  ③渗透倍数和因数的相互依存性。

  2、寻找一个数的因数和倍数的方法让学生自己生成

  在寻找一个数的因数和倍数的过程中。教师将学生推向发现与探索的前台,寻找一个数的倍数和因数,方法不是惟一的。教师在肯定各种方法合理性的同时,及时引导学生进行沟通,寻找它们的共同点和联系,进而比较各种方法之间的优劣,遴选最优方法,提升思维效率。

  3、合理**教材

  寻找一个数的因数是本节课的教学难点,学生往往满足于答案的寻找,而忽视寻找过程中的思考策略及思维方法。

  教学中,教师独具匠心,采用列表的方法找2、3、5的倍数,让学生概括一个数倍数的特征,并在此基础上学习一个数因数的特征,这样的改变,既达到预定目的,又为学习找因数做了铺垫,引发了学生寻找36的因数的浓厚兴趣。在汇报时,重点解决如何有序、不重复、不遗漏地找出一个数的因数。这样安排既留足了自主探究的空间,又在方法上有所引导,避免了学生的盲目猜测。在引导学生自主探索一个数的因数的特征时,教师让学生带着问题去观察讨论:每一个非零自然数的因数的个数是有限的还是无限的.?一个非零自然数的最大因数是几?一个非零自然数的最小因数是几?以上安排,降低了学生的学习难度。

  4、增强游戏中数学思维的含量

  本节课以“有效引导下自主探索”为教学策略。以三道乘法算式为线索,以教材文本为依托,以有梯度的活动展开对知识的深化巩固,并适时、适量引入多**辅助教学,将诸多细小的认知活动归整在一个探究性的课堂自主研究活动中。通过自主观察、交流发现、共同分享,引领学生经历“研究与发现”的真实过程。课尾游戏的运用,激发了学生的学习热情,让学生以愉快的心情和良好的体验融入学习活动中,培养了学生用数学眼光看待游戏的意识,**降低了学生对数学概念学习的枯燥体验,让知识在游戏中深化,在挑战中升华。

  5、两点建议:

  1、要精心设计由易到难、由浅入深的练习促进理解,巩固新知,发展思维。由于时间分配不够合理,未能体现出练习的层次性。

  2、反馈渠道要畅通。要注重课堂反馈,找2和5的倍数反馈时不少学生只停留在乘法算式层面,说明教学找3的倍数时学法指导还不够到位。

  《因数和倍数》评课稿 2

  《因数和倍数》整节课简明清晰,教师语言精练,始终为学生创造宽松的学习氛围。课前交流渗透人与人之间的关系,亲切,有效,让学生先在脑海中留下“相互依存”这种印象。为后面教学因数和倍数的概念,不能单独存在埋下伏笔。在教学中引导学生观察除法算式,放手让学生根据计算结果,按一定的标准给算式分类,在此基础上引出概念;结合算式,让学生说一说每个算式中谁是谁的因数,谁是谁的倍数,让学生在交流中掌握概念,进一步体会“因数与倍数是相互依存的”,突破了重难点。接着通过引导学生用一个式子来表示这样的除法算式,进而用字母陈述概念,帮助学生理解因数与倍数的本质意义,体会数学语言简单明了、高度概括的特点。

  练习设计体现了基础性、层次性和发展性。既巩固了对因数和倍数概念的理解,又把“倍数”与“几倍”,“因数”与乘法各部分名称的区别进行了辨析,很好地理解和巩固了概念。

  在学生的学习过程中,老师适时进行有效的评价,对小学生知识技能掌握和情感态度的发展有积极影响。整节课缺乏教师的即时性评价,对学生的行为表现没有给予及时的鼓励、调控和引导,特别是在学生回答出因数和倍数的相互依存关系,用“被除数÷除数=商”和“a÷b=c”表示这一类除法算式时,教师如果能适时地点拨激励,对于学生深入思考、增强自信心、激发学习兴趣将产生积极作用,而这些心理因素对学生取得新的进步又能起到推动作用,从而使学生进入一个不断发展的良性循环之中。

  《因数和倍数》评课稿 3

  《因数和倍数》这一堂课在各个版本中的内容和学习目标都存在着差异。今天听了《因数和倍数》的不同上法,结合自己先前对教材的认识与设计,现在比较着来谈谈听完课后的一些感想。

  1、新旧链接,揭示概念。

  支老师在充分估计学生思维能力的基础上,运用已有的数学知识,让学生建立了“因数与倍数”的概念。如:课的开始,支老师从操作活动把12个小正方形摆成不同的长方形引入,同时训练孩子的空间思维能力,在不动手操作的情况下,用一个简单的算式表达自己的思维过程。让学生说出不同的乘法算式,从而导出倍数和因数的概念。在概念的揭示过程中。让学生自主体验数与形的结合,进而形成因数与倍数的意义。如当得出2×6=12时,引导学生充分练说,“12是6的倍数,12也是2的倍数,6和2都是12的因数”,让学生读读、想想这几句话的意思,初步感受倍数和因数的意义是与乘法有联系的,表达的是自然数之间的关系;接着要求学生根据12×1=12、3×4=12说说哪一个数是哪一个数的倍数(或因数),在迁移中进一步认识倍数和因数的意义。其中12是12的因数、1是12的因数,12是12的倍数等特例,为后面的教学扫除难点。这一环节借助有意义的操作和想象活动,由形到数,再由数到形,学生自主体验其中的因倍关系,为倍数因数概念的引入打下了坚实的基础,数形结合的思想得到了较好的体现。

  2、找准机会,渗透方法。

  在新知教学中,支老师注重学生的探究,渗透数学思想方法的教学,发展思维。本节课中找一个数的倍数和因数,都有比较好的方法。如何通过学生的探究找到方法,成了教学的亮点。如“找36的因数”,应该说,找出36的几个因数并不难,难就难在找出36的所有因数。36有9个因数,如何有序地一个不漏地找出36的因数,我觉得对于刚刚认识因数概念的学生来说有一定的难度。教学中,支老师并没有急切地认定结果,也没有把方法简单地告诉学生,而是让学生**探究,在作业纸上**写出36的所有因数,教师则及时巡视并请学生将各种情况反馈在投影上。有用乘法找的,(有用除法找的,)有有序找的,也有无序找而有遗漏的。教师引导学生对(有序和无序找的)各种方法作了比较,学生在比较、交流中感悟到有序思考的必要性和科学性。这是本节课新知探究阶段的思维交流。既是不断深化理解因数与倍数知识的过程,又是培养学生良好思维品质的过程。给学生**思考的空间,提出了各自的解法或见解,是思维独创性的培养;引导学生一对一对有序的找,或从1开始,用除法一个个去试,是思维条理性的培养;既有迁移于摆方块的形象思维,又有直接运用除法算式的抽象思维,或乘除法口诀的综合运用等,在感受解法多样性中,培养了学生思维的灵活性。在这里教师继续**学生“找到什么时候停?”让学生自然得出:找到两个因数非常接近时就不用再找了。这样一来对学生又是一个知识层面上的提高。

  《因数和倍数》评课稿 4

  《因数和倍数》这一堂课在各个版本中的内容和学习目标都存在着差异。今天听了《因数和倍数》的不同上法,结合自己先前对教材的认识与设计,现在比较着来谈谈听完课后的一些感想。

  首先我说说这两堂课教学内容上的差异。第一堂课安排的教学内容有三部分。第一部分是认识因数和倍数,指导学生正确描述因数和倍数。其次安排的教学内容是找一个数的因数和倍数。第三部分是了解因数和倍数以及一个数的最大因数和最小倍数的特性。第二堂课先建立了整除的概念,理**尽和整除之间的关系,然后在整除的基础上认识因数和倍数,最后让学生学会描述因数和倍数。(即4句话:谁能被谁整除,谁能整除谁,谁是谁的倍数,谁是谁的约数。)

  接着我来说说自己的想法。

  第一堂课的上法比较严谨,通过教师的传授和学生的练习,相信大多数学生都能认识因数和倍数并能正确描述,同时也会找一个数的因数和倍数,能根据因数和倍数的特性解决问题。完成了本课的技能目标。在课中,教师让学生说得很充分,并有针对性的进行了练习,使学生扎实地掌握了知识,为后续的学习打下了结实的基础。

  在这一课的导入中,教师用乘算式,让学生先说一说各部分的名称,然后对7×3=21给出描述性的语句“我们说7是21的因数,3也是21的因数;21是7的倍数,21也是3的倍数。”这个导入,除了在乘法里出现了因数这个词和本课内容有关联外,其他关系并不大,用这样的练习作为切入点,它的用处并没有体现。

  其次,教师对学生提醒:“我们说的因数和倍数一般指的是整数,不包括0”,在这里,我觉得教师给出的定义一定要准确“我们说的因数和倍数都是指“0”以外的自然数。”说到这个0是否除外的问题,人教论坛上还有争议,因此对这个问题暂不考虑。在判断是否能说倍数和因数的练习题中,对于加和减题是否能说倍数和因数的判断,我觉得没有存在的必要。在这里教师设计的题“判断8÷4=2,4和2是8的因数,8是4和2的倍数这句话的对错”很有价值,让学生感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。

  第三,在找36的因数中,教师对找的方法进行了指导,要一对一对有序地找。在这里教师可以继续**学生“找到什么时候停?”让学生自然得出:找到两个因数非常接近时就不用再找了。这样一来对学生又是一个知识层面上的提高。

  第四,在最后的巩固练习中,有一题讲到一个数的最大因数和最小倍数的和是20,问学生这个数是多少。这题是学生对因数和倍数特性的反馈,在这题完成后,我想到了一个练习题“一个数最小的倍数是18,找出这个数的其他因数”,这样整合特性和找一个数的因数这两个知识点。还有一题在数轴上面标出3的倍数,在数轴下面标出4的倍数,这里出现共同的点,这样的话能否对公倍数适当地提点一下呢?让学生留点疑问结束课堂教学,为后一课的学习埋下伏笔。

  第二堂课的开始教师比较开放,让学生想一个除法算式,然后把这些出发算式归类,分类出除不尽和除尽,在除尽里再分出整除。这里充分发挥了学生的主体作用,教学的素材来源于学生自己,提高了学生的学习积极性。在对除尽的区分中,教师让学生用语言来描述除尽,我觉得对学生来说只要会辨别就行了,不需要要准确的语言去定义概念。教师给出的整除的概念不够严密,既然没有向学生说明整除所说的数都不包括0,那么在定义给出时,应向学生说明除0以外的自然数。

  《因数和倍数》评课稿 5

  《因数和倍数》这一堂课在各个版本中的内容和学习目标都存在着差异。今天听了《因数和倍数》的不同上法,结合自己先前对教材的认识与设计,现在比较着来谈谈听完课后的一些感想。

  首先我说说这两堂课教学内容上的差异。第一堂课安排的教学内容有三部分。第一部分是认识因数和倍数,指导学生正确描述因数和倍数。其次安排的教学内容是找一个数的因数和倍数。第三部分是了解因数和倍数以及一个数的最大因数和最小倍数的特性。第二堂课先建立了整除的概念,理**尽和整除之间的关系,然后在整除的基础上认识因数和倍数,最后让学生学会描述因数和倍数。(即4句话:谁能被谁整除,谁能整除谁,谁是谁的倍数,谁是谁的约数。)

  接着我来说说自己的想法。

  第一堂课的上法比较严谨,通过教师的传授和学生的练习,相信大多数学生都能认识因数和倍数并能正确描述,同时也会找一个数的因数和倍数,能根据因数和倍数的特性解决问题。完成了本课的技能目标。在课中,教师让学生说得很充分,并有针对性的进行了练习,使学生扎实地掌握了知识,为后续的学习打下了结实的基础。

  在这一课的导入中,教师用加,减,乘,除四个不同的算式,让学生先说一说各部分的名称,然后对7×3=21给出描述性的语句“我们说7是21的因数,3也是21的因数;21是7的倍数,21也是3的倍数。”这个导入,除了在乘法里出现了因数这个词和本课内容有关联外,其他关系并不大,用这样的练习作为切入点,它的用处并没有体现。

  其次,教师对学生提醒:“我们说的因数和倍数一般指的是整数,不包括0”,在这里,我觉得教师给出的定义一定要准确“我们说的因数和倍数都是指“0”以外的自然数。”说到这个0是否除外的`问题,人教论坛上还有争议,因此对这个问题暂不考虑。在判断是否能说倍数和因数的练习题中,对于加和减题是否能说倍数和因数的判断,我觉得没有存在的必要。在这里教师设计的题“判断8÷4=2,4和2是8的因数,8是4和2的倍数这句话的对错”很有价值,让学生感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。

  第三,在找18的因数中,教师对找的方法进行了指导,要一对一对有序地找。在这里教师可以继续**学生“找到什么时候停?”让学生自然得出:找到两个因数非常接近时就不用再找了。这样一来对学生又是一个知识层面上的提高。

  第四,在最后的巩固练习中,有一题讲到一个数的最大因数和最小倍数的和是20,问学生这个数是多少。这题是学生对因数和倍数特性的反馈,在这题完成后,我想到了一个练习题“一个数最小的倍数是18,找出这个数的其他因数”,这样整合特性和找一个数的因数这两个知识点。还有一题在数轴上面标出3的倍数,在数轴下面标出4的倍数,这里出现共同的点,这样的话能否对公倍数适当地提点一下呢?让学生留点疑问结束课堂教学,为后一课的学习埋下伏笔。

  第二堂课的开始教师比较开放,让学生想一个除法算式,然后把这些出发算式归类,分类出除不尽和除尽,在除尽里再分出整除。这里充分发挥了学生的主体作用,教学的素材来源于学生自己,提高了学生的学习积极性。在对除尽的区分中,教师让学生用语言来描述除尽,我觉得对学生来说只要会辨别就行了,不需要要准确的语言去定义概念。教师给出的整除的概念不够严密,既然没有向学生说明整除所说的数都不包括0,那么在定义给出时,应向学生说明除0以外的自然数。


倍数和因数评课稿10篇(扩展9)

——倍数和因数磨课反思(一)份

  倍数和因数磨课反思 1

  上好一堂课的首要条件就是要备好课,要了解学情,要设计好教案。教案是教师上课的必需品,里面记载了上课的流程以及教师在课上所要说的话、提的问题,相当于主持人的主持稿子。在几次磨课以及正式上课中,我能发现,每堂课中我都会忘记其中的一个环节,这个时候我就会着急地想去看教案,但由于在上课,因此,我只能**住内心的慌乱,进行下一个环节。这样,不仅在教学的流畅上,甚至在教学重难点的突破上都造成了障碍,以致教学效果会不如之前所预想的好。还有,**时会过于死板。教案上写着我在这个环节要提这样一个问题,于是我把问题抛给学生,可是没想到出现冷场,这时我又要慌了,来不及思考是不是提的问题太抽象还是提得不清楚不具体,为了让学生按照我的教学过程和思路走下去,我开始重复着同一个问题,直到有学生起来回答。像这样的处理,我显得不够机智,过于迟钝,这样不仅浪费了课上宝贵的时间,也让**环节变得枯燥,没有真正地让学生有效地思考,学生也只会被我牵着走,顺利完成本节课内容。一堂好课,还是要以学生为中心,老师要跟着学生的思维走,做学生的指导者、合作者。

  二、不能准确把握好学生的课堂生成。

  面对不一样的'学生,每节课上学生对同一个问题的回答就会不一样,这也是老师在备课时很难预设到的,这就考验老师在上课时对学生所回答的是不是很准确地把握好。当然,老师希望学生的回答是本来所设想好的,假如学生没有达到点上或者搭不到边,那么老师就要好好地利用这些学生的回答,将这些学生的回答很巧妙地引到本节课的知识点上,这样更能让学生牢固地掌握新知识。如果课堂上的答案一味的都是老师所需要的答案,那课堂何来精彩?

  但是,对这方面的处理,在几次磨课下来,总不能很好地利用学生的回答来促进学生的认知。比如:学生回答错了,我没有利用错误的回答来让其反思,实际上这是提高他反思能力的一个方式,能够使他在错误中得到反思,从而提升解决问题的能力;或者可以让其他同学对他的回答进行评价,在学生的交流中产生思维的碰撞,同样也能让其达到反思效果。还有学生已经意识到正确答案的方向,可是我也没有很好地进行顺势地引导,否则也会使课堂“活”起来。

  三、处理学生作业不够到位。

  在《倍数和因数》这课中,还有一个环节是整堂课中占有重要地位——展示和处理学生作业。这也是整堂课中最难处理好的部分。每次上课,总是很乱。课前想好了我要拿怎样的作业进行展示,并且对应的问题该如何提,脑子里总会过一遍。可是,真的到了课上,学生的作业展示出来,第一个问题“你对这位学生的作业有什么想说的”,学生都不知道要说什么,又是冷场,我又不知道该怎么办了,于是在一串慌乱地我问你答中处理完学生的作业,显然没有达到预期的效果。接下来再一次上课的时候,直接就问“这位同学找的对不对”,然后我就又处于一个矛盾中,是要先处理结果还是处理过程,显然,课前的思考还是太少,没有考虑到位,于是乎又乱乱的结束了一次。在第三次磨课中,确定好先看结果,然后看过程,学生都知道没有找全,那怎样找才能都找全?其实我想把学生引到在列乘法算式时要有序的列,可是,学生不知道怎么说,有同学说“列除法算式”,这一次吸取上一次的经验,想让学生先用乘法算式说完,于是,用很强烈地语气表明先用乘法算式来想该怎么列才能找全,可是最后的效果也是一般,过程还是有点乱。最后正式上课的时候,本来就有点紧张,而且课前没有把投影仪调到自己想要的位置,于是改变了原先先处理结果的设计,先让学生处理了过程,对过程进行改正之后再一起来把结果进行处理,虽然过程中感觉到有些问题提的不太到位,但是整个环节下来比之前要有所进步。

  整堂课下来,可能最多的是老师问一句,学生答一句,在这样的我问你答的过程中,学生获得新知。像这样的模式是比较保险的,没有放手太多,虽然能够按照自己的思路一步步下来,但其实学生在这节课中自己真真正正思考的却太少了,对于学生的自主解决问题能力没有能够很好地提高。上课时老师还是要努力转变自己的角色,少说一点,多引导点;少做一点,多合作点。还有对于课上一些细节的处理以及语言的**和表达还要加强,少一些口头禅,使问题和过渡语更加圆润。

点赞(0) 打赏

评论列表 共有 0 条评论

暂无评论

微信小程序

微信扫一扫体验

立即
投稿

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部